Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New type of flying reptile discovered

14.10.2009
Discovered by scientists at the University of Leicester and the Geological Institute, Beijing, Darwin's pterodactyl preyed on flying dinosaurs and shows how a controversial type of evolution may have powered the origin of major new groups

An international group of researchers from the University of Leicester (UK), and the Geological Institute, Beijing (China) have identified a new type of flying reptile – providing the first clear evidence of an unusual and controversial type of evolution.

Pterosaurs, flying reptiles, also known as pterodactyls, dominated the skies in the Mesozoic Era, the age of dinosaurs, 220-65 million years ago. Scientists have long recognized two different groups of pterosaurs: primitive long-tailed forms and their descendants, advanced short-tailed pterosaurs some of which reached gigantic size. These groups are separated by a large evolutionary gap, identified in Darwin's time, that looked as if it would never be filled – until now.

Details of a new pterosaur, published today in the Proceedings of the Royal Society B: Biological Sciences fits exactly in the middle of that gap. Christened Darwinopterus, meaning Darwin's wing, the name of the new pterosaur honours the 200th anniversary of Charles Darwin's birth and the 150th anniversary of the publication of On the origin of species.

Gaps in the fossil record are common – only a tiny proportion of all the animals and plants that ever lived were fortunate enough to become fossilised, and only a tiny proportion of these have been collected so far. Consequently, our understanding, both of the history of particular groups such as pterosaurs, and of the evolutionary processes that generated those histories, is still patchy and often controversial.

More than 20 fossil skeletons of Darwinopterus, some of them complete, were found earlier this year in north-east China in rocks dated at around 160 million years old. This is close to the boundary between the Middle and Late Jurassic and at least 10 million years older than the first bird, Archaeopteryx. The long jaws, rows of sharp-pointed teeth and rather flexible neck of this crow-sized pterosaur suggest that it might have been hawk-like, catching and killing other contemporary flying creatures. These included various pterosaurs, tiny gliding mammals and small, pigeon-sized, meat-eating dinosaurs that, aided by their feathered arms and legs had recently taken to the air, and would later evolve into birds.

"Darwinopterus came as quite a shock to us" explained David Unwin part of the research team and based at the University of Leicester's School of Museum Studies. "We had always expected a gap-filler with typically intermediate features such as a moderately elongate tail – neither long nor short – but the strange thing about Darwinopterus is that it has a head and neck just like that of advanced pterosaurs, while the rest of the skeleton, including a very long tail, is identical to that of primitive forms".

Dr Unwin added: "The geological age of Darwinopterus and bizarre combination of advanced and primitive features reveal a great deal about the evolution of advanced pterosaurs from their primitive ancestors. First, it was quick, with lots of big changes concentrated into a short period of time. Second, whole groups of features (termed modules by the researchers) that form important structures such as the skull, the neck, or the tail, seem to have evolved together. But, as Darwinopterus shows, not all these modules changed at the same time. The head and neck evolved first, followed later by the body, tail, wings and legs. It seems that natural selection was acting on and changing entire modules and not, as would normally be expected, just on single features such as the shape of the snout, or the form of a tooth. This supports the controversial idea of a relatively rapid "modular" form of evolution.

The research team warns that much more work is needed to substantiate this idea of modular evolution but, if it proves to be true, then it might help explain not just how primitive pterosaurs evolved into more advanced forms, but many other cases among animals and plants where we know that rapid large scale evolution must have taken place. The extraordinary evolutionary radiation of mammals following the extinction of dinosaurs is just one of many examples.

Said Dr Unwin: "Frustratingly, these events, which are responsible for much of the variety of life that we see all around us, are only rarely recorded by fossils. Darwin was acutely aware of this, as he noted in the Origin of species, and hoped that one day fossils would help to fill these gaps. Darwinopterus is a small but important step in that direction."

Dave Unwin | EurekAlert!
Further information:
http://www.le.ac.uk

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>