Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Type of El Niño Could Mean More Hurricanes Make Landfall

03.07.2009
A new study, in the journal Science, suggests that the form of El Niño may be changing potentially causing not only a greater number of hurricanes than in average years, but also a greater chance of hurricanes making landfall.

El Niño years typically result in fewer hurricanes forming in the Atlantic Ocean. But a new study suggests that the form of El Niño may be changing potentially causing not only a greater number of hurricanes than in average years, but also a greater chance of hurricanes making landfall, according to climatologists at the Georgia Institute of Technology. The study appears in the July 3, 2009, edition of the journal Science.

“Normally, El Niño results in diminished hurricanes in the Atlantic, but this new type is resulting in a greater number of hurricanes with greater frequency and more potential to make landfall,” said Peter Webster, professor at Georgia Tech’s School of Earth and Atmospheric Sciences.

That’s because this new type of El Niño, known as El Niño Modoki (from the Japanese meaning “similar, but different”), forms in the Central Pacific, rather than the Eastern Pacific as the typical El Niño event does. Warming in the Central Pacific is associated with a higher storm frequency and a greater potential for making landfall along the Gulf coast and the coast of Central America.

Even though the oceanic circulation pattern of warm water known as El Niño forms in the Pacific, it affects the circulation patterns across the globe, changing the number of hurricanes in the Atlantic. This regular type of El Niño (from the Spanish meaning “little boy” or “Christ child”) is more difficult to forecast, with predictions of the December circulation pattern not coming until May. At first glance, that may seem like plenty of time. However, the summer before El Niño occurs, the storm patterns change, meaning that predictions of El Niño come only one month before the start of hurricane season in June. But El Niño Modoki follows a different prediction pattern.

“This new type of El Niño is more predictable,” said Webster. “We’re not sure why, but this could mean that we get greater warning of hurricanes, probably by a number of months.”

As to why the form of El Niño is changing to El Niño Modoki, that’s not entirely clear yet, said Webster.

“This could be part of a natural oscillation of El Niño,” he said. “Or it could be El Niño’s response to a warming atmosphere. There are hints that the trade winds of the Pacific have become weaker with time and this may lead to the warming occurring further to the west. We need more data before we know for sure.”

In the study, Webster, along with Earth and Atmospheric Sciences
Chair Judy Curry and research scientist Hye-Mi Kim used satellite data along with historical tropical storm records and climate models.

The research team is currently looking at La Niña, the cooling of the surface waters in the Eastern and Central Pacific.

"In the past, La Nina has been associated with a greater than average number of North Atlantic hurricanes and La Nina seems to be changing its structure as well," said Webster. "We’re vitally interested in understanding why El Niño-La Niña has changed. To determine this we need to run a series of numerical experiments with climate models.”

David Terraso | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>