Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two NASA Satellites See System 92B Headed North in Bay of Bengal

23.05.2014

NASA's Aqua and TRMM satellites captured radar and infrared data on developing tropical low pressure area System 92B as it now makes it way north through the Bay of Bengal.

On May 22 at 00:51 UTC, NASA and the Japan Aerospace Exploration Agency's Tropical Rainfall Measuring Mission (TRMM) satellite passed over System 92B as it was dropping heavy rainfall over the Bay of Bengal.


In this TRMM 3-D image of System 92B from May 21, some powerful convective storm tops were reaching heights of almost 17 km (about 10.5 miles).

Image Credit: NASA/SSAI, Hal Pierce

TRMM's Precipitation Radar (PR) revealed that rain was falling at the extreme rate of over 191 mm (about 7.5 inches) per hour in powerful convective storms in the center of the Bay of Bengal well to the east of India.

At NASA's Goddard Space Flight Center in Greenbelt, Maryland, TRMM's Precipitation Radar data were also used to construct a simulated 3-D view of 92B's rainfall structure looking toward the east from India.

... more about:
»EDT »NASA »Radar »Space »TRMM »Typhoon »UTC »knots »rainfall »satellite »thunderstorms »tropical

TRMM PR pulled away a veil of clouds and revealed that some powerful convective storm tops were reaching heights of almost 17 km (about 10.5 miles). The extreme rainfall in this area was returning radar reflectivity values of over 53.7 dBZ to the TRMM satellite.

On May 22 at 7:11 UTC/3:11 a.m. EDT, NASA's Aqua satellite passed over System 92B and the Atmospheric Infrared Sounder or AIRS instrument captured infrared data on the low's cloud tops. Satellite imagery shows that the low-level circulation center is large and poorly defined with flaring and fragmented deep convection.

The data showed two areas where thunderstorms had high cloud tops and very cold temperatures near -63F/-52C. Thunderstorms that high into the troposphere have been found to generate heavy rainfall. The areas of strong thunderstorms were north and west of the center of circulation.

By 08:00 UTC/4 a.m. EDT, the Joint Typhoon Warning Center estimated that System 92B had maximum sustained winds between 25 to 30 knots (28.7 to 34.5 mph/46.3 to 55.5 kph). Metsat satellite imagery indicated that the circulation center is located near 17.0 north latitude and 92.1 east longitude in the Bay of Bengal, about 315 nautical miles south of Chittagong, Bangladesh.

System 92B is moving north at 5 knots (5.7 mph/9.2 kph). Computer models vary on the development of the tropical low pressure area, but do expect it to continue drifting to the north and north-northwest.

The Joint Typhoon Warning Center noted that System 92B's potential for the development of a significant tropical cyclone within the next 24 hours remains high.

Rob Gutro/Hal Pierce
NASA's Goddard Space Flight Center

Hal Pierce | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/92b-northern-indian-ocean-may-2014/

Further reports about: EDT NASA Radar Space TRMM Typhoon UTC knots rainfall satellite thunderstorms tropical

More articles from Earth Sciences:

nachricht Researchers find higher than expected carbon emissions from inland waterways
25.05.2016 | Washington State University

nachricht Rutgers scientists help create world's largest coral gene database
24.05.2016 | Rutgers University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>