Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turbulence around heat transport

04.12.2009
Not only in the Earth's mantle, in the atmosphere and in the outer layers of the Sun, but also in a chemical reactor, the exchange of heat may not be as effective as originally thought.

There, because warm fluid rises and hence induces movement, the turbulent convection can be 100 billion times stronger than in the typical cooking pot. Hot fluids mix turbulently with warm fluids.

As the temperature difference between the cold and warm sides increases, the heat transport increases exponentially. When the turbulence is very strong, the exponential growth decreases twofold. Physicists from the Max Planck Institute for Dynamics and Self-Organization, University of California at Santa Barbara, and the French Centre National de la Recherche Scientifique in Nancy report this discovery in the current issule of New Journal of Physics.

The long standing theory for turbulent convective heat transport from 1962 had predicted that the exponential growth would increase. Now, the theory will need to be reconsidered. (New Journal of Physics, December 1st, 2009).

In some respects the experimental apparatus of Eberhard Bodenschatz and colleagues is similar to a gigantic pressure cooker - even if the Director at the Max Planck Institute for Dynamics and Self-Organization calls it (due to its shape) the "Göttingen submarine". In the hermetically sealed submarine, a two-metre high container of one-metre in diameter is heated from below and cooled from above. In-between, a pressurized gas is mixed by turbulent convection, where hot water rises from the hot plate and sinks from the cool one. The main difference is that the convection in the "Göttingen submarine" is a million times stronger than in a cooking pot. With this, the scientists want to learn about turbulence in the Earth mantle, in the atmosphere and in the outer layers of the Sun, where the convection is yet another 100,000 times stronger.

"We have measured the heat transport of very strong convection and found that it is completely different from what we expect on the basis of previously established theory", says Eberhard Bodenschatz. The stronger the turbulence mixes the hot and cold gas, the stronger the heat transport from the hot bottom to the cold top will be - in essence the heat transport increases exponentially. The team measured this increase and found, surprisingly, that the exponent in the law decreases by the power of two. For a given temperature difference, not only one but two states were observed; once where the exponent falls from 0.308 to 0.253, and, sometimes, for a second time to 0.17. In 1962, the American physicist Robert Kraichnan predicted that the exponent should increase from 0.3 to 0.4 and then should be almost constant in this ultimate regime of thermal turbulence. "In the meantime we have conducted more measurements at the highest turbulence levels and found yet another state with possibly another exponent" says Eberhard Bodenschatz: "This time it may be the predicted Kraichnan regime. The multiplicity of states and the exponents baffles us, as the physical processes are yet to be understood".

To understand this better let's take a closer look at the "cooking pot" in the submarine. At the bottom and top plates, the heat is conducted through a few hundred micron thick thermal boundary layer into the gas. Here, a thermal plume develops which carries hot or cold gas into the interior of the vessel. It is well known that plumes of this type form a lava lamp - for yet unknown reasons however, rising and falling plumes merge to create one large circulation that flows up one side and falls on the other. According to Kraichnan's theory, this circulation should lead the boundary layer to become turbulent. From this point on, the heat conduction should increase more rapidly. "Instead the efficiency decreases and we find two states instead of one" says Eberhard Bodenschatz: "Somehow the boundary layers are changing, but we do not know how".

To investigate the heat transport in a planet like Earth or a star like the Sun is ultimately difficult. Even if scientists only want to investigate the turbulence itself, the conditions are difficult to achieve in the laboratory. Therefore the known experimental data are very limited. "Recently, with the submarine we were able to reach very high turbulence levels by using a two metre high container and sulfur hexafluoride (SF6) at 20 times atmospheric pressure" says Eberhard Bodenschatz.

The experimental data from Guenter Ahlers, Denis Funfschilling, and Eberhard Bodenschatz poses a riddle that will challenge theorists and experimentalist alike. The international team is already on its way to designing an experiment that can resolve the fine scales of the boundary layer. Results will give deeper insights into convective processes in the Earth, the atmosphere and the Sun, as well as the potential to optimize heat transfer in industrial reactors.

Original work:

Guenter Ahlers, Denis Funfschilling and Eberhard Bodenschatz

Transitions in heat transport by turbulent convection for Pr = 0.8 and 1011 ≤ Ra ≤ 1015

(2009 New J. Phys. 11 123001, free to read at http://www.iop.org/EJ/abstract/1367-2630/11/12/123001)

Prof. Dr. Eberhard Bodenschatz | EurekAlert!
Further information:
http://www.ds.mpg.de

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>