Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tsunami risk higher in Los Angeles, other major cities

Geologists studying the Jan. 12 Haiti earthquake say the risk of destructive tsunamis is higher than expected in places such as Kingston, Istanbul, and Los Angeles.

Like Haiti's capital, these cities all lie near the coast and near an active geologic feature called a strike-slip fault where two tectonic plates slide past each other like two hands rubbing against each other.

Until now, geologists did not consider the tsunami risk to be very high in these places because when these faults rupture, they usually do not vertically displace the seafloor much, which is how most tsunamis are generated. This latest research suggests even a moderate earthquake on a strike-slip fault can generate tsunamis through submarine landslides, raising the overall tsunami risk in these places.

"The scary part about that is you do not need a large earthquake to trigger a large tsunami," said Matt Hornbach, research associate at The University of Texas at Austin's Institute for Geophysics and lead author on a paper describing the research in the Oct. 10 online edition of the journal Nature Geoscience.

"Organizations that issue tsunami warnings usually look for large earthquakes on thrust faults," said Hornbach. "Now we see you don't necessarily need those things. A moderate earthquake on a strike-slip fault can still be cause for alarm."

Within minutes after the magnitude 7 Haiti earthquake, a series of tsunami waves, some as high as 9 feet (3 meters), crashed into parts of the shoreline. A few weeks later, a team of scientists from the U.S. and Haiti conducted geological field surveys of sites on and offshore near the quake's epicenter.

The scientists determined the tsunamis were generated primarily by weak sediment at the shore that collapsed and slid along the seafloor, displacing the overlying water. Combined with newly discovered evidence of historic tsunamis, the survey revealed a third of all tsunamis in the area are generated in this way. Geologists had previously estimated only about 3 percent of tsunamis globally are generated through submarine landslides.

"We found that tsunamis around Haiti are about 10 times more likely to be generated in this way than we would have expected," said Hornbach.

In addition to Hornbach, team members from The University of Texas at Austin include: Paul Mann, Fred Taylor, Cliff Frohlich, Sean Gulick and Marcy Davis. The team also includes researchers from Queens College, City University of New York; U.S. Geological Survey, University of Missouri; Lamont-Doherty Earth Observatory of Columbia University; University of California, Santa Barbara; Bureau of Mines and Energy (Haiti); and Universite d'Etat de Haiti.

The researchers gathered data on faults beneath the seafloor and land, vertical movement of the land, bathymetry (underwater topography) of the seafloor and evidence of tsunami waves. They worked on foot, on a small inflatable boat and on the 165-foot research vessel Endeavor.

This research was funded by a Rapid Response grant from the National Science Foundation and The University of Texas at Austin's Jackson School of Geosciences.

With additional funding from The Society for Geophysics' Geoscientists Without Borders program, Hornbach and others are now conducting a new research project in nearby Jamaica to assess the tsunami threat there.

"The geology of Kingston, Jamaica is nearly identical to Port Au Prince, Haiti," said Hornbach. "It's primed and ready to go and they need to prepare for it. The good news is, they have a leg up because they're aware of the problem."

For a link to images, contact Marc Airhart (mairhart AT

Marc Airhart | EurekAlert!
Further information:

Further reports about: Geoscience Haiti Tsunami tectonic plate tsunami risk tsunami waves

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>