Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tsunami observed by radar

17.08.2011
The tsunami that devastated Japan on March 11 was picked up by high-frequency radar in California and Japan as it swept toward their coasts, according to U.S. and Japanese scientists. This is the first time that a tsunami has been observed by radar, raising the possibility of new early warning systems.

“It could be really useful in areas such as south-east Asia where there are huge areas of shallow continental shelf,” said Professor John Largier, an oceanographer at the University of California, Davis, Bodega Marine Laboratory, and an author of a new paper describing the work. The paper appears this month in the journal Remote Sensing.

Largier and his colleagues have been using a high-frequency radar array at the Bodega Marine Lab to study ocean currents for the last 10 years. The Bodega lab is part of a network of coastal radar sites funded by the State of California for oceanographic research.

Largier, together with collaborators from Hokkaido and Kyoto universities in Japan and San Francisco State University, used data from radar sites at Bodega Bay, Trinidad, Calif., and two sites in Hokkaido, Japan, to look for the tsunami offshore.

The scientists found that the radar picks up not the actual tsunami wave — which is small in height while out at sea — but changes in currents as the wave passes.

The researchers found they could see the tsunami once it entered shallower coastal waters over the continental shelf. As the waves enter shallower water, they slow down, increase in height and decrease in wavelength until finally hitting the coast.

The continental shelf off the California coast is quite narrow, and approaches to the coast are already well-monitored by pressure gauges, Largier noted. But he said radar detection could be useful, for example, on the East Coast or in Southeast Asia, where there are wide expanses of shallow seas.

Co-authors of the paper with Largier were: Belinda Lipa and Donald Barrick, Codar Marine Sensors, Mountain View, Calif.; Sei-Ichi Saitoh, Hokkaido University; Yoichi Ishikawa and Toshiyuki Awaji, Kyoto University; and Newell Garfield, San Francisco State.

The work was supported by the National Science Foundation, the California Coastal Conservancy, the Sonoma County Water Agency and the National Oceanographic and Atmospheric Administration.

Media contact(s):
John Largier, Bodega Marine Laboratory, (707) 875-1930, jlargier@ucdavis.edu
Andy Fell, UC Davis News Service, (530) 752-4533, ahfell@ucdavis.edu

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>