Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tsunami observed by radar

17.08.2011
The tsunami that devastated Japan on March 11 was picked up by high-frequency radar in California and Japan as it swept toward their coasts, according to U.S. and Japanese scientists. This is the first time that a tsunami has been observed by radar, raising the possibility of new early warning systems.

“It could be really useful in areas such as south-east Asia where there are huge areas of shallow continental shelf,” said Professor John Largier, an oceanographer at the University of California, Davis, Bodega Marine Laboratory, and an author of a new paper describing the work. The paper appears this month in the journal Remote Sensing.

Largier and his colleagues have been using a high-frequency radar array at the Bodega Marine Lab to study ocean currents for the last 10 years. The Bodega lab is part of a network of coastal radar sites funded by the State of California for oceanographic research.

Largier, together with collaborators from Hokkaido and Kyoto universities in Japan and San Francisco State University, used data from radar sites at Bodega Bay, Trinidad, Calif., and two sites in Hokkaido, Japan, to look for the tsunami offshore.

The scientists found that the radar picks up not the actual tsunami wave — which is small in height while out at sea — but changes in currents as the wave passes.

The researchers found they could see the tsunami once it entered shallower coastal waters over the continental shelf. As the waves enter shallower water, they slow down, increase in height and decrease in wavelength until finally hitting the coast.

The continental shelf off the California coast is quite narrow, and approaches to the coast are already well-monitored by pressure gauges, Largier noted. But he said radar detection could be useful, for example, on the East Coast or in Southeast Asia, where there are wide expanses of shallow seas.

Co-authors of the paper with Largier were: Belinda Lipa and Donald Barrick, Codar Marine Sensors, Mountain View, Calif.; Sei-Ichi Saitoh, Hokkaido University; Yoichi Ishikawa and Toshiyuki Awaji, Kyoto University; and Newell Garfield, San Francisco State.

The work was supported by the National Science Foundation, the California Coastal Conservancy, the Sonoma County Water Agency and the National Oceanographic and Atmospheric Administration.

Media contact(s):
John Largier, Bodega Marine Laboratory, (707) 875-1930, jlargier@ucdavis.edu
Andy Fell, UC Davis News Service, (530) 752-4533, ahfell@ucdavis.edu

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>