Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical Storm Omais Weakens and Doubles in Size

26.03.2010
Tropical storm Omais has run into wind shear in the northwestern Pacific Ocean, but as it has weakened overnight it has also doubled in size. NASA's Aqua satellite has captured both infrared and visible images early this morning of the larger Omais.

Late, March 24, Omais strengthened to (63 mph) 55 knots and now that it has run into an environment with stronger wind shear, it has already weakened. The wind shear has increased because of the approach of a frontal system which is currently about 215 nautical miles northwest of the storm.

This morning at 0900 UTC (5 a.m. EDT) Omais' maximum sustained winds were down to 52 mph (45 knots). Omais, known in the Philippines as "Agaton," is now about 515 miles north-northwest of Palau, Micronesia, near 15.3 North and 131.5 East. It’s a slow moving storm, creeping along at 5 mph (4 knots) in a north-northwesterly direction.

As the storm continues to weaken, the reach of its tropical storm-force winds is expanding over a larger area. On March 24, tropical storm-force winds of 39 mph extended 30 miles out from the center. Now that Omais has weakened winds of that same strength extend as far as 65 miles from the center, so the area of tropical storm-force winds has more than doubled overnight.

The Atmospheric Infrared Sounder (AIRS) instrument on NASA's Aqua satellite captured cold thunderstorm cloud tops in the center and southwestern corner of Tropical Storm Omais on March 25 at 12:41 a.m. EDT. The cluster of high thunderstorms on the southwestern edge is easily seen in today's AIRS visible image, as are the clouds associated with the cold front to the northwest of Omais.

As the cold front approaches, cooler and drier air associated with it will prevent cloud formation (and thunderstorm development), and vertical wind shear will increase. As a result, Omais is expected to dissipate over the next day and a half.

Text credit: Rob Gutro, NASA's Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2010/h2010_Omais.html

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>