Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More Tropical Cyclones in Past Could Play Role in Warmer Future

25.02.2010
More frequent tropical cyclones in Earth’s ancient past contributed to persistent El Niño-like conditions, according to a team of climate scientists led by Yale University. Their findings, which appear in the Feb. 25 issue of the journal Nature, could have implications for the planet’s future as global temperatures continue to rise due to climate change.

The team used both cyclone and climate models to study the frequency and distribution of tropical cyclones (also known as hurricanes or typhoons) during the Pliocene epoch, a period three to five million years ago when temperatures were up to four degrees Celsius warmer than today.

The team found that there were twice as many tropical cyclones during this period, that they lasted two to three days longer on average than they do now, and that, unlike today, they occurred across the entire tropical Pacific Ocean.

“The Pliocene is the best analog we have in the past for what could happen in our future,” said Christopher Brierley, a Yale postdoctoral associate and an author of the study. “We wondered whether all these storms could have contributed to the warmer climate.”

In fact, the team discovered a positive feedback cycle between tropical cyclones and upper-ocean circulation in the Pacific that explains the increase in storms and appears to have led to permanent El Niño-like conditions.

Today, cold water originating off the coasts of California and Chile skirts around the region of tropical cyclone activity on its way to the Equator, where it results in a “cold tongue” that stretches west off the coast of South America. During the Pliocene, however, the team found that this cold water could not avoid being hit by one of the many tropical cyclones, which would churn up and mix warmer water into it. This warming at the Equator led to changes in the atmosphere that in turn created more tropical storms—and the cycle would repeat.

The team hopes to study how much mixing could result from tropical cyclones in today’s ocean waters—something that is hard to incorporate in global climate models, said Alexey Fedorov, an associate professor at Yale and lead author of the paper.

Fedorov cautioned that there is not necessarily a direct link between what happened during the Pliocene and what might happen in the future, as the team’s results for this epoch differed in many respects from current projections for future global warming. For example, the existing consensus is that, while the number of intense hurricanes will increase, the overall number will actually decrease.

“However, unless we understand the causes of these differences, we will not be sure whether our projections are correct,” Fedorov said. “Changes in the frequency and distribution of these storms could be a significant component of future climate conditions.”

Other authors of this paper include Kerry Emanuel of the Massachusetts Institute of Technology.

Funding for this study was provided by the National Science Foundation, the Department of Energy Office of Science, and the David and Lucile Packard Foundation.

DOI: nature08831.3d

PRESS CONTACT: Suzanne Taylor Muzzin 203-432-8555

Suzanne Taylor Muzzin | EurekAlert!
Further information:
http://www.yale.edu

More articles from Earth Sciences:

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>