Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More Tropical Cyclones in Past Could Play Role in Warmer Future

25.02.2010
More frequent tropical cyclones in Earth’s ancient past contributed to persistent El Niño-like conditions, according to a team of climate scientists led by Yale University. Their findings, which appear in the Feb. 25 issue of the journal Nature, could have implications for the planet’s future as global temperatures continue to rise due to climate change.

The team used both cyclone and climate models to study the frequency and distribution of tropical cyclones (also known as hurricanes or typhoons) during the Pliocene epoch, a period three to five million years ago when temperatures were up to four degrees Celsius warmer than today.

The team found that there were twice as many tropical cyclones during this period, that they lasted two to three days longer on average than they do now, and that, unlike today, they occurred across the entire tropical Pacific Ocean.

“The Pliocene is the best analog we have in the past for what could happen in our future,” said Christopher Brierley, a Yale postdoctoral associate and an author of the study. “We wondered whether all these storms could have contributed to the warmer climate.”

In fact, the team discovered a positive feedback cycle between tropical cyclones and upper-ocean circulation in the Pacific that explains the increase in storms and appears to have led to permanent El Niño-like conditions.

Today, cold water originating off the coasts of California and Chile skirts around the region of tropical cyclone activity on its way to the Equator, where it results in a “cold tongue” that stretches west off the coast of South America. During the Pliocene, however, the team found that this cold water could not avoid being hit by one of the many tropical cyclones, which would churn up and mix warmer water into it. This warming at the Equator led to changes in the atmosphere that in turn created more tropical storms—and the cycle would repeat.

The team hopes to study how much mixing could result from tropical cyclones in today’s ocean waters—something that is hard to incorporate in global climate models, said Alexey Fedorov, an associate professor at Yale and lead author of the paper.

Fedorov cautioned that there is not necessarily a direct link between what happened during the Pliocene and what might happen in the future, as the team’s results for this epoch differed in many respects from current projections for future global warming. For example, the existing consensus is that, while the number of intense hurricanes will increase, the overall number will actually decrease.

“However, unless we understand the causes of these differences, we will not be sure whether our projections are correct,” Fedorov said. “Changes in the frequency and distribution of these storms could be a significant component of future climate conditions.”

Other authors of this paper include Kerry Emanuel of the Massachusetts Institute of Technology.

Funding for this study was provided by the National Science Foundation, the Department of Energy Office of Science, and the David and Lucile Packard Foundation.

DOI: nature08831.3d

PRESS CONTACT: Suzanne Taylor Muzzin 203-432-8555

Suzanne Taylor Muzzin | EurekAlert!
Further information:
http://www.yale.edu

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>