Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More Tropical Cyclones in Past Could Play Role in Warmer Future

25.02.2010
More frequent tropical cyclones in Earth’s ancient past contributed to persistent El Niño-like conditions, according to a team of climate scientists led by Yale University. Their findings, which appear in the Feb. 25 issue of the journal Nature, could have implications for the planet’s future as global temperatures continue to rise due to climate change.

The team used both cyclone and climate models to study the frequency and distribution of tropical cyclones (also known as hurricanes or typhoons) during the Pliocene epoch, a period three to five million years ago when temperatures were up to four degrees Celsius warmer than today.

The team found that there were twice as many tropical cyclones during this period, that they lasted two to three days longer on average than they do now, and that, unlike today, they occurred across the entire tropical Pacific Ocean.

“The Pliocene is the best analog we have in the past for what could happen in our future,” said Christopher Brierley, a Yale postdoctoral associate and an author of the study. “We wondered whether all these storms could have contributed to the warmer climate.”

In fact, the team discovered a positive feedback cycle between tropical cyclones and upper-ocean circulation in the Pacific that explains the increase in storms and appears to have led to permanent El Niño-like conditions.

Today, cold water originating off the coasts of California and Chile skirts around the region of tropical cyclone activity on its way to the Equator, where it results in a “cold tongue” that stretches west off the coast of South America. During the Pliocene, however, the team found that this cold water could not avoid being hit by one of the many tropical cyclones, which would churn up and mix warmer water into it. This warming at the Equator led to changes in the atmosphere that in turn created more tropical storms—and the cycle would repeat.

The team hopes to study how much mixing could result from tropical cyclones in today’s ocean waters—something that is hard to incorporate in global climate models, said Alexey Fedorov, an associate professor at Yale and lead author of the paper.

Fedorov cautioned that there is not necessarily a direct link between what happened during the Pliocene and what might happen in the future, as the team’s results for this epoch differed in many respects from current projections for future global warming. For example, the existing consensus is that, while the number of intense hurricanes will increase, the overall number will actually decrease.

“However, unless we understand the causes of these differences, we will not be sure whether our projections are correct,” Fedorov said. “Changes in the frequency and distribution of these storms could be a significant component of future climate conditions.”

Other authors of this paper include Kerry Emanuel of the Massachusetts Institute of Technology.

Funding for this study was provided by the National Science Foundation, the Department of Energy Office of Science, and the David and Lucile Packard Foundation.

DOI: nature08831.3d

PRESS CONTACT: Suzanne Taylor Muzzin 203-432-8555

Suzanne Taylor Muzzin | EurekAlert!
Further information:
http://www.yale.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>