Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical Cyclone Peipah Passes Palau, Philippines Prepare

07.04.2014

Tropical Cyclone Peipah passed the island of Palau on April 5 moving through the Northwestern Pacific Ocean as it heads for a landfall in the Philippines. Peipah was formerly known as Tropical Cyclone 05W and was renamed when it reached tropical storm-force. Since then, however, wind shear has weakened the storm to a tropical depression.

On April 5 at 2100 UTC/5 p.m. EDT, Tropical Storm 05W, renamed Peipah (and known locally in the Philippines as Domeng) was located about 262 nautical miles east-southeast of Koror. It was centered near 5.5 north and 137.8 east and moving to the west-northwest at 8 knots/9.2 mph/14.8 kph. Maximum sustained winds were near 35 knots/40 mph/62 kph.  


This composite TRMM and MTSAT-2 satellite image taken on April 7 shows the bulk of Peipah's clouds and showers pushed west-northwest of the storm's center. Heaviest rainfall was occurring at a rate of 1 inch/25 mm per hour (red) northwest of the center.

Image Credit: NRL/NASA/JAXA

The VIIRS instrument that flies aboard NASA-NOAA's Suomi NPP satellite captured an infrared image of Peipah on April 5 at 16:27 UTC/12:27 p.m. EDT. It showed strong thunderstorms west of the center of circulation as a result of moderate to strong easterly wind shear.

That wind shear continued over the next two days as two other satellites saw the same effect.

By April 7 at 0900 UTC/5 a.m. EDT, Peipah had weakened to a tropical depression with maximum sustained winds near 25 knots/28.7 mph/46.3 kph. It was located near 6.4 north and 132.1 east, about 819 nautical miles southeast of Manila, Philippines. 

Peipah was moving to the west-southwest at 15 knots/17.2 mph/27.8 kph and is expected to turn to the west-northwest making landfall in northeastern Mindanao before moving through the central or Visayas region. Mindanao is the second largest and southernmost major island in the Philippines.

Satellite imagery on April 7 continued to show that the main convection and thunderstorms were still being pushed to the west-northwest of the center as a result of vertical wind shear. An image Peipah showing clouds and rainfall was created by the Naval Research Laboratory that combines rainfall rate data from NASA's TRMM satellite with cloud imagery from Japan's MTSAT-2 satellite.

The images, taken at 0544 UTC/1:44 a.m. EDT and 5:23 UTC/1:23 a.m. EDT, respectively show the clouds and showers pushed to the west-northwest of the center. The TRMM data showed that the heaviest rainfall was occurring at a rate of 1 inch/25 mm per hour northwest of the center.  

The Philippine Atmospheric, Geophysical and Astronomical Services Administration issued a Tropical Cyclone Warning for Shipping on April 7.

Peipah continues to move west-northwest toward the Philippines and the Joint Typhoon Warning Center forecasters do not expect the storm to intensify much before landfall.

Text credit:  Rob Gutro
NASA's Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/content/goddard/05w-northwestern-pacific-ocean/

Further reports about: Cyclone Mindanao NASA Philippines Space TRMM UTC circulation clouds knots rainfall satellite winds

More articles from Earth Sciences:

nachricht For a rare prairie orchid, science is making climate change local
12.02.2016 | USDA Forest Service - Northern Research Station

nachricht NASA sees Tropical Cyclone Winston form
12.02.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>