Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TRMM Satellite Sees Four Possibilities for the Next Atlantic Tropical Storm

15.08.2011
On Friday, August 12th, there were no named tropical cyclones in the North Atlantic Ocean. However, the National Hurricane Center (NHC) is now monitoring four areas in the Atlantic Ocean that have potential for developing into tropical cyclones and the TRMM satellite captured a look at their rainfall at various times in the past few days.

The Tropical Rainfall Measuring Mission or TRMM satellite is managed by NASA and the Japanese Space Agency, and can provide data on rainfall rates occurring in a tropical cyclone as well as estimate rainfall totals. On August 12, TRMM captured rainfall rates in each of the tropical candidates as the satellite flew over each one individually.

An area of disturbed weather (92L shown on the upper left) was seen by the TRMM satellite on 12 August 2011 at 0353 UTC. On August 12, System 92L was located near 17.8 North and 45.3 West, about 1000 miles east of the northern Leeward Islands. It is moving to the west-northwest at 20 mph. It has recently shown better organization, but there are no signs of a surface circulation. However, because the environmental conditions will allow for development (light wind shear and warm sea surface temperatures, System 92L has been given a 50% probability of developing into a tropical cyclone within the next 48 hours.

On August 11, 2011 at 0319 UTC, the TRMM satellite had a good view of an area of disturbed weather called System 93L. On August 12, System 93L was located 450 miles southwest of the southernmost Cape Verde Islands, near 11.3 North and 30.3 West. TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) showed that this area, which has since moved to the southwest of the Verde Islands, contained lines of heavy rainfall. The NHC also gave this area a medium chance (40%) of developing into a tropical cyclone.

Another area low potential (20%) for tropical cyclone development called System 94L, was located 700 miles northeast of the northern Leeward Islands near 24.7 North and 54.7 West. System 94L was seen by the TRMM satellite on August 12, 2011 at 0350 UTC. The NHC noted that this "Slow development is possible during the next couple of days as the low moves west-southwestward or westward at about 10 mph."

The NHC also gave another area, called System 95L, has a high (60%) chance at developing into a tropical cyclone in the next 24 hours. System 95L was located 200 miles north of Bermuda near 34.8 North and 66.8 West. The TRMM satellite flew almost directly over this low pressure system early on August 12, 2011 at 0208 UTC when it was weak. By 2 p.m. EDT, the thunderstorm activity associated with it had become well-defined. The development of System 95L may be high, but it comes with a caveat. That is, it has a high chance to develop tonight (Aug. 12) or on August 13, but only before it merges with a cold front. If it does become a depression, it would be Tropical Depression 6 in the Atlantic Ocean hurricane season.

The Geostationary Operational Environmental Satellite called GOES-13 captured an image of all four low pressure systems: Systems 92L, 93L, 94L and 95L, on August 12, 2011 at 1445 UTC (10:45 a.m. EDT). Any one of these low pressure areas have the potential to develop into a tropical depression over the weekend. System 95L is closest to the U.S. followed by System 94L, 92L and 93L.

Text Credit: Hal Pierce/Rob Gutro, SSAI/NASA Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2011/h2011_95L.html

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>