Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TRMM measures Cyclone Paul's rainfall from space

31.03.2010
Having been hit by two tropical cyclones so far this season, Queensland had been the center of tropical cyclone activity, but with the recent arrival of Tropical Cyclone Paul, it is now the Northern Territory's turn to experience heavy rains and gusty winds.

Paul originated from a low pressure circulation embedded within the monsoon trough over the Arufura Sea between the northern coast of Australia and New Guinea. As the circulation drifted southward towards northern Australia it intensified slowly and only became a Category 1 cyclone on the evening of March 28, 2010 (local time) when the center was right over the northeast coast of the Northern Territory where it brought wind gusts of up to 110 kph (~70 mph, equivalent to a tropical storm on the US Saffir-Simpson scale).

Since its launch back in 1997, the Tropical Rainfall Measuring Mission satellite (better known as TRMM) has served as a valuable platform for monitoring tropical cyclones using its unique combination of active radar and passive microwave sensors. TRMM captured this first image of Paul at 9:08 UTC on March 28, 2010 (6:38 pm Australian CST) when the center was right over the northeast coast of the Northern Territory. The image shows the horizontal distribution of rain intensity inside the storm. Rain rates in the center of the swath are from the TRMM Precipitation Radar (PR), the only spaceborne precipitation radar of its kind, while those in the outer portion are from the TRMM Microwave Imager (TMI). The rain rates are overlaid on infrared (IR) data from the TRMM Visible Infrared Scanner (VIRS).

Although Paul does not have a visible eye in the IR data, the center of the storm's circulation is clearly evident in the rain pattern over the coast. Paul's center of circulation is bordered by a band of moderate intensity rain to the northwest and surrounded by outer rainbands that spiral inwards to the south and east that have light to moderate rain. Embedded within the rainbands are occasional areas of heavy rain.

TRMM data was used to create a 3-D perspective of the storm from data from TRMM's Precipitation Radar instrument. The most prominent feature is a deep convective tower, which penetrates up to 9 miles (15 km) high. This corresponds with an area of intense rain in the northwestern eyewall evident in the TRMM's image of horizontal rainfall. These tall towers are associated with convective bursts and can be a sign of future strengthening as they indicate areas where heat, known as latent heat, is being released into the storm. This heating is what drives the storm's circulation. Despite Paul's proximity to land, it was able to intensify into a Category 2 cyclone (equivalent to a minimal Category 1 hurricane) by the following morning with wind gusts of up to 140 kph (~85 mph). Paul is hovering over land along the coast and is expected to weaken slowly over the next day or so; however, it could eventually re-emerge over the very warm waters of the Gulf of Carpentaria and re-intensify.

TRMM is a joint mission between NASA and the Japanese space agency JAXA.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

nachricht WSU researchers document one of planet's largest volcanic eruptions
12.10.2017 | Washington State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>