Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TRMM Eyes Rainfall in Dissipating Former Hurricane Cristina

18.06.2014

NASA and the Japan Aerospace Exploration Agency's Tropical Rainfall Measuring Mission or TRMM satellite passed over a dissipating former Hurricane Cristina and found it still contained heavy rain as it rapidly weakened.

Hurricane Cristina had sustained winds of over 130 knots (almost 150 mph) on June 12, 2014 making her the second hurricane in the eastern Pacific Ocean this year to reach category four on the Saffir-Simpson hurricane wind scale.


On June 14, NASA's TRMM satellite found rain falling at a rate of almost 97 mm (about 3.8 inches) per hour in the northwestern side of Cristina's eye wall where thunderstorms reached above 13.5 km (about 8.4 miles).

Image Credit: SSAI/NASA, Hal Pierce

The TRMM satellite had an excellent view of Cristina when it flew over on June 14, 2014 at 1031 UTC (6:31 a.m. EDT). At that time, Cristina had started weakening and had wind speeds estimated at less than 70 knots (about 80 mph) when TRMM flew overhead.

To form a complete picture of the storm, rainfall from TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) instruments were overlaid on an enhanced infrared image of Cristina's clouds taken from NOAA's GOES-West satellite. The images were combined at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

... more about:
»Dissipating »EDT »Flight »Hurricane »NASA »NHC »Pacific »Radar »Space »knots »rainfall »satellite

Although Cristina had started a weakening trend TRMM's Precipitation Radar instrument still found rain falling at a rate of almost 97 mm (about 3.8 inches) per hour in the northwestern side of Cristina's eye wall. At Goddard, TRMM's PR data was used to create a 3-D view of the Cristina's rainfall structure.

That 3-D image showed powerful thunderstorms in the northwestern side of the storm were reaching heights above 13.5 km (about 8.4 miles). These same TRMM data showed that Cristina's eye wall was broken on the eastern side.

The passage of Cristina over cooler ocean waters and southwesterly wind shear resulted in the once powerful hurricane dissipating to a remnant low pressure area on Sunday, June 15, 2014.

On June 17 at 09:02 a.m. EDT, the National Hurricane Center (NHC) noted that the remnant low pressure center of Cristina continued to spin in the Eastern Pacific, and the circulation center was located near 23 north latitude and 117 west longitude.

NHC forecasters noted that the circulation will continue to spin down over the next couple of days and is expected to dissipate by the night time hours on Wednesday, June 18.

Text credit:  Hal Pierce
SSAI/NASA's Goddard Space Flight Center

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/cristina-eastern-pacific-ocean/

Further reports about: Dissipating EDT Flight Hurricane NASA NHC Pacific Radar Space knots rainfall satellite

More articles from Earth Sciences:

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

nachricht World's first solar fuels reactor for night passes test
21.02.2018 | SolarPACES

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>