Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TRMM gets a look at Irene, the first hurricane of the Atlantic season

24.08.2011
The Tropical Rainfall Measuring Mission satellite has been busy measuring rainfall within Hurricane Irene, and forecasts call for between 5 and 10 inches in the southeastern and central Bahamas and Turks and Caicos Islands as Irene moves toward them today.

It's been a busy season so far in terms of tropical storms with seven named storms already in the Atlantic basin; however, none of them have had a very large impact as they have either been small, short-lived or remained at sea and none of them have intensified into a hurricane until now.


This 3-D perspective of Irene was created from TRMM satellite data taken at 15:57 UTC (11:57 a.m. EDT) on August 22, 2011. It revealed an area of deep convection (shown in red) near the storm's center where precipitation-sized particles are being carried aloft. Credit: NASA/SSAI, Hal Pierce

Irene, which originated from a tropical wave that propagated off the west coast of Africa, became the 8th named storm of the season as it approached the Lesser Antilles on the 20th of August and the first hurricane of the season as it was passing over Puerto Rico on the morning of the 22nd. Now back over open water, Irene is poised to pass close to the northern coast of Hispaniola and poses a threat to the Bahamas.

The Tropical Rainfall Measuring Mission (or TRMM) satellite passed directly over Irene as it was leaving Puerto Rico and captured these unique images of the storm as it moving westward near the Dominican Republic. The images were taken at 15:57 UTC (11:57 AM EDT) on 22 August 2011. One image from TRMM data shows a top-down view of the rain intensity within the storm.

Creating the rain rate image is complicated and involves data from three instruments on TRMM. Rain rates in the center of the swath are from the TRMM Precipitation Radar (PR), and those in the outer swath are from the TRMM Microwave Imager (TMI). The rainrates are overlaid on infrared (IR) data from the TRMM Visible Infrared Scanner (VIRS).

TRMM reveals that although a hurricane, Irene has not yet developed an eye and is not yet fully organized. The center of the storm was located just to the southwest of an area of heavy rain (as much as 2 inches/50 mm per hour) about midway between Puerto Rico and the Dominican Republic. Rainbands, containing light to moderate rain curved around the storm mainly to the north and east of the center, revealing the presence of the storm's low pressure circulation, but one that is not yet intense.

The TRMM team at NASA's Goddard Space Flight Center in Greenbelt, Md. also created a 3-D perspective of the storm. It revealed an area of deep convection near the storm's center where precipitation-sized particles are being carried aloft. These tall towers are associated with strong thunderstorms responsible for the area of intense rain near the center of Irene seen in the previous image. They can be a precursor to strengthening as they indicate areas within a storm where vast amounts of heat are being released. This heating, known as latent heating, is what is drives a storm's circulation and intensification.

At the time these images were taken, Irene was a Category 1 hurricane with maximum sustained winds reported at 70 knots (~80 mph) by the National Hurricane Center.

At 8 a.m. EDT on August 23, Irene strengthened into a Category 2 hurricane. Irene's center was headed toward the Turks and Caicos Islands and the southeastern Bahamas. Irene's maximum sustained winds were near 100 mph (160 kmh). It was located near 20.6 North and 70.6 West, about 70 miles south-southeast of Grand Turk Island and moving to the west-northwest near 10 mph (17 kmh). Minimum central pressure is 978 millibars. Various hurricane and tropical storm warnings and watches are in effect and can be found at The National Hurricane Center's website: www.nhc.noaa.gov.

The rainfall rates seen by the TRMM satellite are reflected in the rainfall forecast totals by the National Hurricane Center (NHC) today. The NHC expects another 1 to 3 inches across Puerto Rico, 3 to 6 inches over northern Hispaniola and isolated amounts as high as 10 inches in higher terrain. The southeastern and central Bahamas and Turks and Caicos Islands can expect 5 to 10 inches of rainfall as Irene moves toward them today.

Irene is expected to be over the Turks and Caicos Islands and the southeastern Bahamas tonight and near the central Bahamas early tomorrow. Irene is expected to intensify and is expected to become a major hurricane and residents along the U.S. east coast are keeping close watch.

TRMM is a joint mission between NASA and the Japanese space agency JAXA.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>