Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TRMM gets a look at Irene, the first hurricane of the Atlantic season

24.08.2011
The Tropical Rainfall Measuring Mission satellite has been busy measuring rainfall within Hurricane Irene, and forecasts call for between 5 and 10 inches in the southeastern and central Bahamas and Turks and Caicos Islands as Irene moves toward them today.

It's been a busy season so far in terms of tropical storms with seven named storms already in the Atlantic basin; however, none of them have had a very large impact as they have either been small, short-lived or remained at sea and none of them have intensified into a hurricane until now.


This 3-D perspective of Irene was created from TRMM satellite data taken at 15:57 UTC (11:57 a.m. EDT) on August 22, 2011. It revealed an area of deep convection (shown in red) near the storm's center where precipitation-sized particles are being carried aloft. Credit: NASA/SSAI, Hal Pierce

Irene, which originated from a tropical wave that propagated off the west coast of Africa, became the 8th named storm of the season as it approached the Lesser Antilles on the 20th of August and the first hurricane of the season as it was passing over Puerto Rico on the morning of the 22nd. Now back over open water, Irene is poised to pass close to the northern coast of Hispaniola and poses a threat to the Bahamas.

The Tropical Rainfall Measuring Mission (or TRMM) satellite passed directly over Irene as it was leaving Puerto Rico and captured these unique images of the storm as it moving westward near the Dominican Republic. The images were taken at 15:57 UTC (11:57 AM EDT) on 22 August 2011. One image from TRMM data shows a top-down view of the rain intensity within the storm.

Creating the rain rate image is complicated and involves data from three instruments on TRMM. Rain rates in the center of the swath are from the TRMM Precipitation Radar (PR), and those in the outer swath are from the TRMM Microwave Imager (TMI). The rainrates are overlaid on infrared (IR) data from the TRMM Visible Infrared Scanner (VIRS).

TRMM reveals that although a hurricane, Irene has not yet developed an eye and is not yet fully organized. The center of the storm was located just to the southwest of an area of heavy rain (as much as 2 inches/50 mm per hour) about midway between Puerto Rico and the Dominican Republic. Rainbands, containing light to moderate rain curved around the storm mainly to the north and east of the center, revealing the presence of the storm's low pressure circulation, but one that is not yet intense.

The TRMM team at NASA's Goddard Space Flight Center in Greenbelt, Md. also created a 3-D perspective of the storm. It revealed an area of deep convection near the storm's center where precipitation-sized particles are being carried aloft. These tall towers are associated with strong thunderstorms responsible for the area of intense rain near the center of Irene seen in the previous image. They can be a precursor to strengthening as they indicate areas within a storm where vast amounts of heat are being released. This heating, known as latent heating, is what is drives a storm's circulation and intensification.

At the time these images were taken, Irene was a Category 1 hurricane with maximum sustained winds reported at 70 knots (~80 mph) by the National Hurricane Center.

At 8 a.m. EDT on August 23, Irene strengthened into a Category 2 hurricane. Irene's center was headed toward the Turks and Caicos Islands and the southeastern Bahamas. Irene's maximum sustained winds were near 100 mph (160 kmh). It was located near 20.6 North and 70.6 West, about 70 miles south-southeast of Grand Turk Island and moving to the west-northwest near 10 mph (17 kmh). Minimum central pressure is 978 millibars. Various hurricane and tropical storm warnings and watches are in effect and can be found at The National Hurricane Center's website: www.nhc.noaa.gov.

The rainfall rates seen by the TRMM satellite are reflected in the rainfall forecast totals by the National Hurricane Center (NHC) today. The NHC expects another 1 to 3 inches across Puerto Rico, 3 to 6 inches over northern Hispaniola and isolated amounts as high as 10 inches in higher terrain. The southeastern and central Bahamas and Turks and Caicos Islands can expect 5 to 10 inches of rainfall as Irene moves toward them today.

Irene is expected to be over the Turks and Caicos Islands and the southeastern Bahamas tonight and near the central Bahamas early tomorrow. Irene is expected to intensify and is expected to become a major hurricane and residents along the U.S. east coast are keeping close watch.

TRMM is a joint mission between NASA and the Japanese space agency JAXA.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>