Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Treeline Advances in Canada’s Arctic

26.01.2009
With climate change is a global concern, it’s timely to consider how trees are faring on the highest mountain slopes and at the northern treeline. In such extreme environments, oddly contorted forms of pine, spruce, birch and fir are created by blasting winds and inhospitable soils.

In a widely recognized painting by Tom Thomson, a bent and lonely tree hunches on a rocky ledge overlooking a windswept lake and distant snowy peaks. The misshapen tree remains so emblematic of the beauty and harshness of Canada’s climate that it is part of the permanent collection at the National Art Gallery in Ottawa.

Fast forward 100 years after the tree first sparked the painter’s imagination and climate change is a global concern. It’s timely to consider how trees are faring on the highest mountain slopes and at the northern treeline. In such extreme environments, oddly contorted forms of pine, spruce, birch and fir are created by blasting winds and inhospitable soils. These ‘Krumholz’ – stunted trees that look more like shrubs – are markers that will enable scientists to assess the impact of climate change.

Adjunct Professor at Halifax's Dalhousie University, Karen Harper is an expert in the dynamics of plant communities and has previously studied the forest edge along clearcuts, lakeshores and wildfires. She attempts to understand how the forest edges forward into the treeless tundra. Dr. Harper became intimately acquainted with the harsh realities of this habitat during field work for her doctoral studies on Canadian boreal forests.

“The flies! Don’t even think about it,” says Dr. Harper, shaking her head.

At one point in northern Alberta, a cloud of mosquitoes, midges and blackflies found her inventing ways to escape the onslaught. A bug jacket with an enclosed mesh hood provided the first line of defense. Next, as her hands and feet became the insects’ favored target, she added gloves and thick socks. Still when she moved, flies would razor in on a thin line between gloves and jacket. Finally, in desperation, she began cutting up her socks to slide over her arms for an extra layer of protection. All that clothing added to the ambience of hiking in 30 degree Celsius weather.

This perseverance and passion provided the background necessary to become the project leader for an extensive study of the Arctic Treeline Advance. Funded through the Government of Canada during the International Polar Year 2007-2009, her team is collaborating with researchers around the globe. This participation resulted from her efforts to recruit and convince Canadian researchers to contribute to the international project by focusing on the Arctic treeline, specifically how the boreal forest transitions into tundra. Field researchers look at patterns and ecological processes, including changes in growth and reproduction in tree species like White Spruce, Black Spruce, Balsam Fir and Eastern Larch. The socio-economic impact of this changing landscape for communities will include an assessment of changes in the food supply.

“What does that transition zone look like? Is it an abrupt change to less abundance, like you would see on alpine Rockie mountain slopes? Are ‘islands’ of trees and shrubs found ‘floating’ within the tundra? Or, is it a mosaic of forest, wetlands and tundra, all with associated plant communities?” she asks.

As an adjunct professor with Dalhousie's School for Resource and Environmental Studies, and the Department of Biology, she supervises both undergraduate and graduate students participating in this ambitious project.

Brian Starzomski, a post-doc researcher, is focusing on White Spruce growing beyond the treeline in the Yukon. He’s also monitoring how bird communities change as they move across the treeline in Labrador.

Environmental science student Stephanie Daley is looking at the effects of sheltering from the wind on the growth and establishment of a strange growth-form of Balsam Fir and White Spruce called ‘Krummholz.’

Another environmental student, Julie Pelton, and biology student Elisabeth Oakham are based in Churchill, Manitoba. Danielle Defields, a SRES graduate student, is looking at spatial patterns of vegetation at the treeline in the Yukon and in Labrador.

“The general expectation is increased growth and reproduction as a result of warming climate that causes the treeline to simply expand beyond where it is currently found, both further north, and higher up on mountains,” says Dr. Starzomski. “So, the treeline expands. Darker trees absorb more solar radiation, leading to more warming. This leads to further expansion and the creation of a positive feedback cycle.”

There is often beauty in the midst of a harsh landscape, as painter Tom Thomson recognized and preserved for posterity.

Dr. Harper recalls an unforgettable moment that happened near the treeline at the MacMillan Pass in the Mackenzie Mountains. A large group of caribou gradually grazed their way over the crest of a hill toward her, ending up passing only about 20 metres away from where she was standing.

“I was so mesmerized, I forgot to take a photo,” she laughs.

With perseverance and insight, these studies will generate knowledge that provides a clear picture of what will transpire within this fragile ecosystem in the years ahead.

Charles Crosby | Newswise Science News
Further information:
http://www.dal.ca

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>