Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Traveling Through a Volcano

24.07.2012
How much ash will be injected into the atmosphere during Earth’s next volcanic eruption?

Recent eruptions have demonstrated our continued vulnerability to ash dispersal, which can disrupt the aviation industry and cause billions of dollars in economic loss. Scientists widely believe that volcanic particle size is determined by the initial fragmentation process, when bubbly magma deep in the volcano changes into gas-particle flows.

But new Georgia Tech research indicates a more dynamic process where the amount and size of volcanic ash actually depend on what happens afterward, as the particles race toward the surface. Their initial size and source depth, as well as the collisions they endure within the conduit, are the differences between palm-sized pumice that hit the ground and dense ash plumes that jet into the atmosphere and can halt aviation. The findings are published in the current edition of Nature Geoscience.

Assistant Professor Josef Dufek used lab experiments and computer simulations to study particle break-up, known as granular disruption, in volcanic eruptions. His team, which included the University of California, Berkeley’s Michael Manga and Ameeta Patel, determined that shallow (approximately 500 meters below the surface) fragmentation levels likely cause abundant, large pumice that are often seen in large volcanic eruptions. If the fragmentation begins a few kilometers underground, the volcano is more likely to emit fine-grained ash.

“The longer these particles stay in the conduit, the more often they collide with each other,” said Dufek, a faculty member in Georgia Tech’s School of Earth and Atmospheric Sciences. “These high-energy collisions break the volcanic particles into fractions of their original size. That’s why deeper fragmentations produce small particles. Particles that begin closer to the surface with less energy don’t have time for as many collisions before they exit the volcano. They stay more intact, are larger and often contained in pyroclastic flows.”

The team collected volcanic rock from California’s Medicine Lake volcanic deposit for collision experiments. They also used glass spheres because, like glass, pumice is heated and hardens before crystals are able to form. Using a pumice gun that propels volcanic fragments using compressed gases, Dufek and his team determined that particles must collide at a minimum of 30 meters per second to break into larger pieces.

Using numerical simulations, the researchers concluded that large pumice particles (greater than fist size) will not likely remain intact unless the fragmentation is very shallow. Abundant large pumice rocks in a deposit provide an indication of the depth of fragmentation, which may vary over the course of the eruption. Due to the depth and violent nature of the process, scientists have had little record of the depth of the fragmentation process, even though much of the eruptive dynamics and subsequent hazards are determined in this process.

Dufek and his team will next use the research to better understand the dynamics of one of the most rare natural disasters: super volcanoes, which produced the features in Yellowstone National Park.

“We know very little about the eruption processes during super eruptions,” said Dufek. “Indications of their fragmentation levels will provide important clues to their eruptive dynamics, allowing us to study them in new ways.”

This project is supported by the National Science Foundation (NSF) (Award Numbers 0809321 and 0809564). The content is solely the responsibility of the principal investigators and does not necessarily represent the official views of the NSF.

Jason Maderer | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>