Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trapped atmospheric waves triggered more weather extremes

12.08.2014

Weather extremes in the summer - such as the record heat wave in the United States that hit corn farmers and worsened wildfires in 2012 - have reached an exceptional number in the last ten years.

Man-made global warming can explain a gradual increase in periods of severe heat, but the observed change in the magnitude and duration of some events is not so easily explained. It has been linked to a recently discovered mechanism: the trapping of giant waves in the atmosphere. A new data analysis now shows that such wave-trapping events are indeed on the rise.

“The large number of recent high-impact extreme weather events has struck and puzzled us,” says Dim Coumou, lead author of the study conducted by a team of scientists from the Potsdam Institute for Climate Impact Research (PIK).

“Of course we are warming our atmosphere by emitting CO2 from fossil fuels, but the increase in devastating heat waves in regions like Europe or the US seems disproportionate.” One reason could be changes in circulation patterns in the atmosphere. By analysing large sets of global weather data, the researchers found an intriguing connection.

... more about:
»Arctic »CO2 »PIK »PNAS »atmosphere »circulation »fossil fuels »heat »mechanism »waves

Rossby Waves: meandering airstreams

An important part of the global air motion in the mid-latitudes normally takes the form of waves wandering around the globe, called Rossby Waves. When they swing north, they suck warm air from the tropics to Europe, Russia, or the US; and when they swing south, they do the same thing with cold air from the Arctic.

However, the study shows that in periods with extreme weather, some of these waves become virtually stalled and greatly amplified. While a few warm days have little impact, effects on people and ecosystems can be severe when these periods are prolonged.

“Behind this, there is a subtle resonance mechanism that traps waves in the mid-latitudes and amplifies them strongly,” says Stefan Rahmstorf, co-author of the study to be published in the Proceedings of the US National Academy of Sciences (PNAS). Using advanced data analysis, the new study shows that when certain resonance conditions are fulfilled, the atmosphere tends to develop anomalously slowly propagating waves with large amplitudes, typically associated with extreme weather on the ground.

An important finding is that this phenomenon is occurring more often: After the year 2000, it has been almost twice as frequent as before. “Evidence for actual changes in planetary wave activity was so far not clear. But by knowing what patterns to look for, we have now found strong evidence for an increase in these resonance events.”

The Arctic factor: warming twice as fast as most other regions

Why would these events be on the rise? Both theory and the new data suggest a link to processes in the Arctic. Since the year 2000, the Arctic is warming about twice as fast as the rest of the globe. One reason for this is that because the white sea ice is rapidly shrinking, less sunlight gets reflected back into space, while the open ocean is dark and hence warms more.

“This melting of ice and snow is actually due to our lifestyle of churning out unprecedented amounts of greenhouse gases from fossil fuels,” says Hans Joachim Schellnhuber, co-author of the study and director of PIK. As the Arctic warms more rapidly, the temperature difference to other regions decreases. Yet temperature differences are a major driver of the atmospheric circulation patterns that in turn rule our weather.

“The planetary waves topic illustrates how delicately interlinked components in the Earth system are.” Schellnhuber concludes: "And it shows how disproportionately the system might react to our perturbations.”

Article: Coumou, D., Petoukhov, V., Rahmstorf, S., Petri, S., Schellnhuber, H.J. (2014): Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer. Proceedings of the US National Academy of Sciences PNAS [DOI:10.1073/pnas.1412797111]

Weblink where the article will be published: www.pnas.org/cgi/doi/10.1073/pnas.1412797111

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

Jonas Viering | PIK Potsdam
Further information:
http://www.pik-potsdam.de

Further reports about: Arctic CO2 PIK PNAS atmosphere circulation fossil fuels heat mechanism waves

More articles from Earth Sciences:

nachricht Mountain glaciers shrinking across the West
23.10.2017 | University of Washington

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>