Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transitional Sauropodomorph from Early Jurassic of South Africa Found

12.11.2009
A new dinosaur discovered in South Africa - - named Aardonyx, meaning "earth claw" - - is shedding light on the origins of the biggest dinosaurs ever, the sauropods, said Matthew Bonnan, Ph.D., associate professor of biology at Western Illinois University who is part of the discovery team.

With funding from National Geographic Society's Committee for Research and Exploration, and with support from Western Illinois' College of Arts and Sciences and Center for Innovation in Teaching and Research, Bonnan has been to Free State, South Africa three times (2004, 2006, 2007) working with South African colleagues at two quarry sites determined to be Early Jurassic, approximately 195 million years ago.

The discovery was accepted for publication in the Proceedings of the Royal Society B, a significant journal of biological research and reviews, with the title, "A new transitional sauropodomorph dinosaur from the Early Jurassic of South Africa and the evolution of sauropod feeding and quadrupedalism."

"I can't express in words just how exciting and what a privilege this is to announce to the world a brand new dinosaur; one that's a transitional, that tells us in some ways how we moved from smaller biped animals to bigger, heavier quadruped animals," Bonnan said. "And it fits in so well with the research I'm doing personally, and with students.

"On a scientific level, it's really fulfilling to have a hypothesis on how you think dinosaurs got large, then to test that in the field and get back these kind of data - - a new dinosaur - - that really does start to fill in some of those anatomical gaps," he added.

An analysis of the bone microstructure of the 7-meter (20-feet) long herbivore indicates that it was young and still growing. Its skeletal anatomy shares a number of key features with sauropods. Limb proportions show that Aardonyx (r DON icks) was a biped, although its forearm bones interlock - - like those of quadrupedal sauropods - - suggesting that it could occasionally walk on all-fours, Bonnan explained.

Bonnan's specialties in the digs are as a functional morphologist, who understands anatomy and how bones and muscles work together in movement, and as a vertebrate paleobiologist, who studies how vertebrate animals have evolved. Co-researchers include primary investigator Adam Yates, Ph.D. (paleontologist), Bernard Price Institute for Palaeontological Research, University of the Witwatersrand, Johannesburg, South Africa; Johann Neveling, Ph.D. (geologist), Council for Geoscience, Pretoria, South Africa; Marc Blackbeard, a master's degree student at the University of the Witwatersrand, who discovered the first bones of Aardonyx and helped excavate and map the site; and Anusuya Chinsamy, Ph.D., (paleontologist) of the University of Cape Town, South Africa, who specializes in histology - - examining thin-sections of bone in living and fossil vertebrates for clues to their growth.

"We were ecstatic that when we began to take bone bits on the surface away and dig a little deeper, we got nice, well-preserved solid bones. Incredibly, not only were we finding pieces of the limbs and the ribs and the backbone, but we also started to find pieces of the skull. That's when it started to get really exciting, because the skull can tell you if you have a new dinosaur or not," Bonnan said. "By the end of 2006 we had enough of the skull to get an idea of what this animal looked like."

The skull and jaws show signs that this dinosaur had a wide gape and could bulk-browse, taking in huge mouthfuls of vegetation in each bite, an adaptation amplified later in sauropod dinosaurs. Despite its "small" size, sauropod-like vertebral joints had developed to brace its back bone, and the thigh bone (femur) was straightened for weight-support, Bonnan added. The feet were flattened, bore large claws, and were more robust medially, features of a weight-bearing axis shifted towards the midline as in their giant near-descendants.

He said the next step was to take the bones back to the lab in South Africa and clean them, assemble them and start to figure out whether what they had unearthed was something new to science or whether it was already known and maybe just a bigger form.

"It got really exciting in 2007 when we started laying these bones out and looking closely at the features on them," Bonnan said. "We realized this animal, while it shared certain features with ones that we know, had features that we've never seen before. We finally were able to say this is indeed a new species of dinosaur. That was an incredible feeling."

The two bones in the forearm of the new dinosaur Aardonyx was the tipoff to Bonnan that this animal was related to the giant sauropods.

"The forearm bones of Aardonyx are beginning to show the interlocking position found in the giant sauropods. In other dinosaurs that are bipeds, that walk on their hind legs, you don't see that feature. You only see that in sauropods," Bonnan explained. "Aardonyx may not have walked on all fours all the time, but it was certainly was capable of dropping down and walking on those forearms because it had the ability to resist the stress."

"Both on a scientific level and a personal level this has just been absolutely fantastic," Bonnan added.

* Dr. Matt Bonnan's YouTube video of Aardonyx
(http://www.youtube.com/watch?v=W498fFVBeEA)
* Visit the comprehensive Aardonyx site with information, photos and drawings provided by Dr. Matt Bonnan: wiu.edu/EarthClaw
Dr. Matthew Bonnan, Associate Professor
Dept. of Biology, Western Illinois University
E-mail: MF-Bonnan@wiu.edu
Office phone: (309) 298-2155

Dr. Matthew Bonnan | Newswise Science News
Further information:
http://www.wiu.edu

More articles from Earth Sciences:

nachricht Sun's impact on climate change quantified for first time
27.03.2017 | Schweizerischer Nationalfonds SNF

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>