Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Trackway Analysis Shows How Dinosaurs Coped with Slippery Slopes

A new investigation of a fossilized tracksite in southern Africa shows how early dinosaurs made on-the-fly adjustments to their movements to cope with slippery and sloping terrain. Differences in how early dinosaurs made these adjustments provide insight into the later evolution of the group.

The research, conducted by researchers at the University of Michigan, Argentina's Universidad de Buenos Aires, and the Iziko South African Museum in Cape Town, South Africa, will be published online Oct. 6 in the open-access journal PLoS ONE.

The Moyeni tracksite in Lesotho contains more than 250 footprints made by a variety of four-legged animals near the beginning of the Jurassic Period (about 200 million years ago), when the Earth’s landmasses were united as Pangea. The site was first discovered and described in the 1960s and 1970s by French paleontologist Paul Ellenberger but has not since been examined in detail. In their re-analysis of the fossil tracksite, the researchers created a high-resolution map of trackway surface using a combination of traditional mapping techniques and a 3D surface scanner, which recorded millimeter-scale detail. The digital record of the site will serve as an archive and will be the source of future research, said U-M's Jeffrey Wilson, an assistant professor in the Department of Geological Sciences and an assistant curator in the Museum of Paleontology.

The researchers’ re-interpretation of the geology of the tracksite indicated that the dinosaurs were walking across an ancient point bar that presented the animals with varying surface conditions. Based on the map, scans, and first-hand observations at the site, Wilson and coworkers Claudia Marsicano and Roger Smith interpreted the tracks to understand how dinosaurs adjusted to changes in terrain as they moved between a wet riverbed, a sloping bank, and a flat, upper surface of the point bar.

"Tracks and trackways bring animals to life in a way that their bones cannot, by providing a brief but vibrant record of a living, breathing animal as it moved through its environment," Wilson said. "While fossilized bones can provide a wealth of information about extinct animals' anatomy and physiology, inferences about their locomotion and behavior are necessarily indirect." Tracks, on the other hand, are a direct record of the animal's behavior.

The disadvantage, though, is that tracks preserve the impression of nothing more than the sole of the foot, rendering trackmaker identification an approximation. It is very difficult to identify species with such limited information.

"Suppose you ran down the beach with a group of friends and then tried to identify each person's footprints," Wilson said. "You might use characteristics like foot size and length and even the number of toes, if someone in the group happens to be missing one. We use similar indicators to figure out what we're looking at, and while we can't identify tracks down to the species level, we can distinguish major groups, such as plant-eating ornithischians and meat-eating theropods."

When they analyzed the tracks, the researchers determined that ornithischians changed their way of walking as surface conditions changed. In the river bed, they crouched low, adopted a sprawling four-legged stance, and crept along flat-footed, dragging their feet. On the slope, they narrowed their stance, still walking on all fours, but picking up their feet. Once they reached the flat, stable ground on top, they switched to walking on two legs.

In contrast, the theropod that crossed the surface didn't vary its posture or gait. Remaining upright on two legs, it used claws on its toes to grip slippery surfaces.

"The tracksite is a natural laboratory," said Smith. "We have a record of how different animals reacted to the same set of ground conditions."

The different walking styles also foreshadow evolutionary trends in the two dinosaur lines, Wilson said. Three separate times in their evolutionary history, ornithischians switched from walking mainly on two legs to walking exclusively on all four.

"It was thought that early in their evolutionary history, they had the capacity to do both, but at Moyeni they were caught in the act, and we can analyze how and perhaps why they did it," Marsicano said.

Theropods, on the other hand, never gave up their two-legged stance. But because their lineage is believed to have given rise to birds, the possibility that their gripping claws played a key role is interesting to consider.

"One idea about the origins of flight is that the progenitors of birds learned to fly by flapping their wings while climbing inclined surfaces," Wilson said. "In that scenario, the ability to grip a surface with claws is important."

The researchers received funding from the Paleontological Scientific Trust, the Woodrow Wilson National Fellowship Foundation, and Consejo Nacional de Investigaciones Científicas y Técnicas.

For more information:
Jeffrey Wilson---
"Dynamic locomotor capabilities revealed by early dinosaur trackmakers from southern Africa"---

Nancy Ross-Flanigan | Newswise Science News
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>