Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trackway Analysis Shows How Dinosaurs Coped with Slippery Slopes

08.10.2009
A new investigation of a fossilized tracksite in southern Africa shows how early dinosaurs made on-the-fly adjustments to their movements to cope with slippery and sloping terrain. Differences in how early dinosaurs made these adjustments provide insight into the later evolution of the group.

The research, conducted by researchers at the University of Michigan, Argentina's Universidad de Buenos Aires, and the Iziko South African Museum in Cape Town, South Africa, will be published online Oct. 6 in the open-access journal PLoS ONE.

The Moyeni tracksite in Lesotho contains more than 250 footprints made by a variety of four-legged animals near the beginning of the Jurassic Period (about 200 million years ago), when the Earth’s landmasses were united as Pangea. The site was first discovered and described in the 1960s and 1970s by French paleontologist Paul Ellenberger but has not since been examined in detail. In their re-analysis of the fossil tracksite, the researchers created a high-resolution map of trackway surface using a combination of traditional mapping techniques and a 3D surface scanner, which recorded millimeter-scale detail. The digital record of the site will serve as an archive and will be the source of future research, said U-M's Jeffrey Wilson, an assistant professor in the Department of Geological Sciences and an assistant curator in the Museum of Paleontology.

The researchers’ re-interpretation of the geology of the tracksite indicated that the dinosaurs were walking across an ancient point bar that presented the animals with varying surface conditions. Based on the map, scans, and first-hand observations at the site, Wilson and coworkers Claudia Marsicano and Roger Smith interpreted the tracks to understand how dinosaurs adjusted to changes in terrain as they moved between a wet riverbed, a sloping bank, and a flat, upper surface of the point bar.

"Tracks and trackways bring animals to life in a way that their bones cannot, by providing a brief but vibrant record of a living, breathing animal as it moved through its environment," Wilson said. "While fossilized bones can provide a wealth of information about extinct animals' anatomy and physiology, inferences about their locomotion and behavior are necessarily indirect." Tracks, on the other hand, are a direct record of the animal's behavior.

The disadvantage, though, is that tracks preserve the impression of nothing more than the sole of the foot, rendering trackmaker identification an approximation. It is very difficult to identify species with such limited information.

"Suppose you ran down the beach with a group of friends and then tried to identify each person's footprints," Wilson said. "You might use characteristics like foot size and length and even the number of toes, if someone in the group happens to be missing one. We use similar indicators to figure out what we're looking at, and while we can't identify tracks down to the species level, we can distinguish major groups, such as plant-eating ornithischians and meat-eating theropods."

When they analyzed the tracks, the researchers determined that ornithischians changed their way of walking as surface conditions changed. In the river bed, they crouched low, adopted a sprawling four-legged stance, and crept along flat-footed, dragging their feet. On the slope, they narrowed their stance, still walking on all fours, but picking up their feet. Once they reached the flat, stable ground on top, they switched to walking on two legs.

In contrast, the theropod that crossed the surface didn't vary its posture or gait. Remaining upright on two legs, it used claws on its toes to grip slippery surfaces.

"The tracksite is a natural laboratory," said Smith. "We have a record of how different animals reacted to the same set of ground conditions."

The different walking styles also foreshadow evolutionary trends in the two dinosaur lines, Wilson said. Three separate times in their evolutionary history, ornithischians switched from walking mainly on two legs to walking exclusively on all four.

"It was thought that early in their evolutionary history, they had the capacity to do both, but at Moyeni they were caught in the act, and we can analyze how and perhaps why they did it," Marsicano said.

Theropods, on the other hand, never gave up their two-legged stance. But because their lineage is believed to have given rise to birds, the possibility that their gripping claws played a key role is interesting to consider.

"One idea about the origins of flight is that the progenitors of birds learned to fly by flapping their wings while climbing inclined surfaces," Wilson said. "In that scenario, the ability to grip a surface with claws is important."

The researchers received funding from the Paleontological Scientific Trust, the Woodrow Wilson National Fellowship Foundation, and Consejo Nacional de Investigaciones Científicas y Técnicas.

For more information:
Jeffrey Wilson---http://www.ns.umich.edu/htdocs/public/experts/
ExpDisplay.php?beginswith=Wilson
"Dynamic locomotor capabilities revealed by early dinosaur trackmakers from southern Africa"---http://dx.plos.org/10.1371/journal.pone.0007331

Nancy Ross-Flanigan | Newswise Science News
Further information:
http://www.umich.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>