Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tracking sediments’ fate in largest-ever dam removal

Salmon are beginning to swim up the Elwha River for the first time in more than a century. But University of Washington marine geologists are watching what’s beginning to flow downstream — sediments from the largest dam-removal project ever undertaken.
The 108-foot Elwha Dam was built in 1910, and after decades of debate it was finally dismantled last year. Roughly a third of the 210-foot Glines Canyon Dam still stands, holding back a mountain of silt, sand and gravel.

Removal of the upper dam was halted in January while crews repair a water-treatment plant near Port Angeles that got clogged with leaves and other debris. For engineers, this phase may be the trickiest part of the dam-removal project. For oceanographers, “the best is yet to come,” said Charles Nittrouer, a UW professor of oceanography and of Earth and space sciences.

It turns out there is even more sediment than originally thought – about 34 million cubic yards. That’s more than 3 million truck loads, enough to bury all of Seattle in a layer almost 3 inches thick.

Aerial photos show sediment starting to fan out around the river’s mouth.

“One of the risks of just looking at these beautiful plume pictures is that you really don’t know the extent of where that sediment actually ends up,” said Andrea Ogston, a UW associate professor of oceanography. “Our focus is looking at what’s happening very close to the seabed – how it’s going to move, where it’s going to get to, what’s its ultimate fate.”

For the past five years, Ogston and Nittrouer and their students have been studying the sediment around the river mouth, initially with the support of Washington Sea Grant, to understand the condition before the dams’ removal. Their current project, funded by the National Science Foundation, is looking for events that could act like a hundred-year storm and bury the sediment deep in the ocean.

The UW researchers have instruments to track particles in the water and record them accumulating on the ocean floor. They are on high alert for a rapid response when the river floods and dislodges the sediment. When that happens, they want to be onsite to record as much data as possible – and perhaps be the first to witness a rare geologic event.

In nature, deep-sea sediment flows triggered by earthquakes or extreme storms can be important for creating oil reserves and other geologic deposits, as a component of the global carbon cycle, and for burying communication cables.

Computer models and the geologic record suggest that when the sediment is in high-enough concentrations, it goes directly to the ocean floor. Instead of the fresh river water floating on top of the seawater, the river water becomes denser than the sea, and the sediment-laden river water plunges below the ocean water.

For the Elwha, that path would take much of the sediment away from the coastline and deep into the Strait of Juan de Fuca.

Learn more on the National Park Service’s Elwha River Restoration website

“A surface plume is very much at the whim of the winds and tides, whereas these underflows are just going down the steepest gradient,” Ogston said. “These are two very different mechanisms that would create very different impacts to the seabed.”

The dams initially powered a pulp mill and were built unusually close to the ocean – the upper dam is just 13 miles from the river mouth. Their removal provides a unique opportunity to study large river discharges.

“There is an understanding of the general type of flow, and people have predicted that it occurs in rivers, but no one has seen the smoking gun yet,” Nittrouer said. “This is a chance to document a 100-year storm. It’s really somewhat new territory.”

So far there have been dramatic changes to the seabed in the shallows, but few changes below about 20 feet, Ogston said.

Where the sediment ends up is of practical interest. Sediment can make the water murky, creating conditions that make it difficult for salmon to lay eggs, or block light from reaching algae and other life on the ocean floor. On the other hand, the sediment also has positive impacts. Many people hope that removing the dam will help with erosion along the Olympic Coast. The new sediment could accumulate and restore natural beaches on the bluffs near Port Angeles.

A spring undergraduate research apprenticeship, now in its third year, studies the geologic impacts of the Elwha dam removals.

A better understanding of sediment transport could also help determine the timing of future dam removals.

“One of the arguments is that rather than having a river that’s unacceptable to salmon for many years, you can accelerate the erosion to flush the system. That way you have two or three really bad years instead of two or three pretty bad decades,” Nittrouer said. Future projects might be trickier, he added, if the sediments contain pesticides or other chemicals.

Nobody knows when the Elwha’s sediment mother lode will begin to shift. A heavy rainfall combined with spring melt could dislodge the heap; if not, next fall and early winter rains will do the job. Either way, the UW marine geologists will be ready to hop in their van, hitch up a boat, and race out to see what happens.

“This is a very exciting time,” Ogston said.

For more information, contact Ogston at 206-543-0768 or and Nittrouer at 206-543-5099 or Nittrouer is on travel until the end of March and is best reached via e-mail.

Hannah Hickey | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>