Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tornadoes Tend Toward Higher Elevations and Cause Greater Damage Moving Uphill

29.08.2013
Research examined terrain damage of Joplin and Tuscaloosa tornadoes

The first field investigations of the effect of terrain elevation changes on tornado path, vortex, strength and damage have yielded valuable information that could help prevent the loss of human life and damage to property in future tornadoes.


Matt McGowan, University of Arkansas

The most severe damage caused by the EF5 tornado that struck Joplin, Mo., on May 22, 2011, occurred on flat terrain or when the tornado was moving uphill.

Engineering researchers at the University of Arkansas analyzed Google Earth images of the massive 2011 Tuscaloosa, Ala., and Joplin, Mo., tornadoes and found similarities between the two in behavior and interaction with the terrain. The findings likely apply to all tornadoes.

“We wanted to understand the impact of terrain on damage magnitude and tornado path,” said Panneer Selvam, professor of civil engineering. “Information about this interaction is critical. It influences decisions about where and how to build, what kind of structure should work at a given site.”

The researchers’ analysis led to three major observations about the nature and behavior of tornadoes as they interact with terrain:

• Tornadoes cause greater damage when they travel uphill and less damage as they move downhill.

• Whenever possible, tornadoes tend to climb toward higher elevations rather than going downhill.

• When a region is surrounded by hills, tornadoes skip or hop over valleys beneath and between these hills, and damage is noticed only on the top of the hills.

For years Selvam has studied the effect of high winds on structures and developed detailed computer models of tornadoes. He and civil engineering graduate student Nawfal Ahmed used tornado path coordinates from the National Oceanic and Atmospheric Administration and imposed this data on overlaid Google Earth images. They studied the tornadoes’ damage in depth by comparing historical images to aerial photographs taken after the events. Google Earth photographed Tuscaloosa one day after the tornado there. For the Joplin tornado, an aerial photograph was taken on June 7, 16 days after the twister.

In terms of magnitude of damage, the data clearly showed that tornadoes cause greater damage going uphill and huge damage on high ground or ridges. Damage decreased as the tornadoes moved beyond the crest of a hill and going downhill. While it seems logical, this data contradicted a finding from a previous study in which Selvam and a different student found that a hill can act as a protection wall for buildings.

The researchers also found that when approaching a geographic intersection, tornadoes climb toward ridges rather than go downhill, which is counterintuitive when one thinks about wind or water seeking the path of least resistance. With both the Joplin and Tuscaloosa tornadoes, there were several locations where the paths changed direction. At each of these locations, or intersections, the tornadoes consistently sought higher ground.

Finally, Selvam and Ahmed discovered that when a region is surrounded by hills, tornadoes tend to maintain a consistent trajectory rather than follow topographical contours. jumping over valleys to hit hilltops and ridges. With both tornadoes, Selvam said, it was clear that all highland areas suffered the most damage.

Occurring less than a month apart, the Tuscaloosa (April 27) and Joplin (May 22) tornadoes are two of the most deadly and expensive natural disasters in recent U.S. history. Tuscaloosa was an EF4, multiple-vortex tornado that destroyed parts of Tuscaloosa and Birmingham, Ala. The tornado killed 64 people and caused roughly $2.2 billion in property damage, which, at the time, made it the costliest single tornado in U.S. history. Only a month later, the Joplin tornado, an EF5 with multiple vortices, which damaged or destroyed roughly a third of the city, killed 158 people, injured 1,150 others and caused $2.8 billion in damage.

The researchers presented their findings at the 12tth Americas Conference on Wind Engineering.

Selvam is holder of the James T. Womble Professorship in Computational Mechanics and Nanotechnology Modeling. He directs the university’s Computational Mechanics Laboratory.

CONTACTS:
Panneer Selvam, professor, civil engineering
College of Engineering
479-575-5356, rps@uark.edu
Matt McGowan, science and research communications officer
University Relations
479-575-4246 or 479-856-2177, dmcgowa@uark.edu

Matt McGowan | Newswise
Further information:
http://www.uark.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>