Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tornadoes Tend Toward Higher Elevations and Cause Greater Damage Moving Uphill

29.08.2013
Research examined terrain damage of Joplin and Tuscaloosa tornadoes

The first field investigations of the effect of terrain elevation changes on tornado path, vortex, strength and damage have yielded valuable information that could help prevent the loss of human life and damage to property in future tornadoes.


Matt McGowan, University of Arkansas

The most severe damage caused by the EF5 tornado that struck Joplin, Mo., on May 22, 2011, occurred on flat terrain or when the tornado was moving uphill.

Engineering researchers at the University of Arkansas analyzed Google Earth images of the massive 2011 Tuscaloosa, Ala., and Joplin, Mo., tornadoes and found similarities between the two in behavior and interaction with the terrain. The findings likely apply to all tornadoes.

“We wanted to understand the impact of terrain on damage magnitude and tornado path,” said Panneer Selvam, professor of civil engineering. “Information about this interaction is critical. It influences decisions about where and how to build, what kind of structure should work at a given site.”

The researchers’ analysis led to three major observations about the nature and behavior of tornadoes as they interact with terrain:

• Tornadoes cause greater damage when they travel uphill and less damage as they move downhill.

• Whenever possible, tornadoes tend to climb toward higher elevations rather than going downhill.

• When a region is surrounded by hills, tornadoes skip or hop over valleys beneath and between these hills, and damage is noticed only on the top of the hills.

For years Selvam has studied the effect of high winds on structures and developed detailed computer models of tornadoes. He and civil engineering graduate student Nawfal Ahmed used tornado path coordinates from the National Oceanic and Atmospheric Administration and imposed this data on overlaid Google Earth images. They studied the tornadoes’ damage in depth by comparing historical images to aerial photographs taken after the events. Google Earth photographed Tuscaloosa one day after the tornado there. For the Joplin tornado, an aerial photograph was taken on June 7, 16 days after the twister.

In terms of magnitude of damage, the data clearly showed that tornadoes cause greater damage going uphill and huge damage on high ground or ridges. Damage decreased as the tornadoes moved beyond the crest of a hill and going downhill. While it seems logical, this data contradicted a finding from a previous study in which Selvam and a different student found that a hill can act as a protection wall for buildings.

The researchers also found that when approaching a geographic intersection, tornadoes climb toward ridges rather than go downhill, which is counterintuitive when one thinks about wind or water seeking the path of least resistance. With both the Joplin and Tuscaloosa tornadoes, there were several locations where the paths changed direction. At each of these locations, or intersections, the tornadoes consistently sought higher ground.

Finally, Selvam and Ahmed discovered that when a region is surrounded by hills, tornadoes tend to maintain a consistent trajectory rather than follow topographical contours. jumping over valleys to hit hilltops and ridges. With both tornadoes, Selvam said, it was clear that all highland areas suffered the most damage.

Occurring less than a month apart, the Tuscaloosa (April 27) and Joplin (May 22) tornadoes are two of the most deadly and expensive natural disasters in recent U.S. history. Tuscaloosa was an EF4, multiple-vortex tornado that destroyed parts of Tuscaloosa and Birmingham, Ala. The tornado killed 64 people and caused roughly $2.2 billion in property damage, which, at the time, made it the costliest single tornado in U.S. history. Only a month later, the Joplin tornado, an EF5 with multiple vortices, which damaged or destroyed roughly a third of the city, killed 158 people, injured 1,150 others and caused $2.8 billion in damage.

The researchers presented their findings at the 12tth Americas Conference on Wind Engineering.

Selvam is holder of the James T. Womble Professorship in Computational Mechanics and Nanotechnology Modeling. He directs the university’s Computational Mechanics Laboratory.

CONTACTS:
Panneer Selvam, professor, civil engineering
College of Engineering
479-575-5356, rps@uark.edu
Matt McGowan, science and research communications officer
University Relations
479-575-4246 or 479-856-2177, dmcgowa@uark.edu

Matt McGowan | Newswise
Further information:
http://www.uark.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>