Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Topography shapes biodiversity, and not only through temperature

02.02.2016

A warming climate is likely to drive species to higher, cooler altitudes. A new study highlights a less obvious, yet crucial way in which their new habitat could differ from the one they leave behind.

Mountains are home to many living species, with biodiversity typically peaking at mid-altitudes. Scientists have long struggled to explain why this is the case, invoking factors such as low temperatures at high elevations or human disturbance further down.


Mutually isolated mountain peaks and valleys (gray/white) and much more connected mid-altitudes (yellow-red gradient).

Image: EPFL

According to new research, mid-altitudes host the largest number of species because the size and the connectedness of similar habitats are greatest there. One implication of their findings, presented in the Proceedings of the National Academy of Sciences, is that moving to higher elevations to adapt to a warming climate could drive species into habitats with a whole different set of spatial properties.

Many factors determine the number species that can co-exist on a patch of land. Large areas with similar properties typically host more species than small ones. And their biodiversity can be increased further if many similar habitats are connected.

In mountainous terrain, other factors come into play, such as temperature, biological productivity, and exposition. By transposing the findings from flat land to mountainous terrain, a team of researchers from across Switzerland has found a new way to explain the observation that biodiversity in mountainous terrain tends to peak at mid-altitudes.

“In mountainous terrain, peaks and valleys are isolated habitats, like islands in the ocean, whereas mid-elevation sites form well-connected patches,” explains Enrico Bertuzzo, a researcher at the Ecohydrology Lab at EPFL and first author of the study. “Given that habitat area and connectivity foster biodiversity, whereas isolation favors the dominance of few species, we hypothesized that topography itself could be playing a key role in regulating how biodiversity varies with elevation.”

Biodiversity is often studied on idealized cone-shaped mountains, where similar habitats are assumed to be found at similar altitudes. In this case, habitats get smaller with increasing altitude, and their species richness is predicted to decrease, leading biodiversity to peak at foot of the cone and steadily decrease with elevation. Instead, Bertuzzo and his coauthors took a more laborious approach.

“Rather than simplifying mountainous terrain to perfect cones or regular hills, our starting point was to consider it in all of its complexity,” explains Florian Altermatt from the Institute of Evolutionary Biology and Environmental Studies at the University of Zurich.

To test their intuition that the very structure a landscape can shape biodiversity patterns, Bertuzzo and his coauthors let loose a large number of virtual species on a mountainous terrain in a computer simulation. Each virtual species was assigned an optimal altitude at which it could thrive, and these altitudes were distributed uniformly across all the elevations considered. When the researchers let the virtual species compete for habitats on landscapes modeled on real-life ones, their simulations confirmed their intuition: topography alone was enough to explain biodiversity patterns observed in nature.

“Other factors, like temperature, productivity, etc., are obviously also important, but they inevitably act on top of the unavoidable effect provided by the landscape structure,“ says Altermatt.

These findings are of particular relevance in a warming world. “Understanding the relation between elevation and biodiversity is crucial to predict how the distribution of species will change in response to climate change,” says Bertuzzo.

“Warmer temperatures will cause species' niches to shift upwards. The same ecological community will therefore move up the mountain, where it will find a different spatial composition, both in terms of available area and connectivity. Our findings underscore the importance of considering these factors to predict future changes.”

This study was carried out by researchers from the Laboratory for Ecohydrology at the EPFL, the Department of Aquatic Ecology at the Swiss Federal Institute of Aquatic Science and Technology (Eawag), the Department of Evolutionary Biology and Environmental Studies at the University of Zürich, and the Department of Civil and Environmental Engineering at Princeton University.

Reference:
Enrico Bertuzzo, Francesco Carrara, Lorenzo Maric, Florian Altermatt, Ignacio Rodriguez-Iturbe, and Andrea Rinaldoa. Geomorphic controls on elevational gradients of species richness. Proceedings of the National Academy of Sciences. February 1, 2016. doi: 10.1073/pnas.1518922113

Contacts:
Prof. Andrea Rinaldo
Labor für Ökohydrologie
ETH Lausanne
Tel. +41 21 693 80 34
Mobile +41 79 226 70 83
E-mail: andrea.rinaldo@epfl.ch

Prof. Florian Altermatt
Institut für Evolutionsbiologie und Umweltwissenschaften
Universität Zürich
Tel. +41 58 765 55 92
E-mail: florian.altermatt@ieu.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch/articles/2016/topografie-beeinflusst-biodiversitaet_...

Kurt Bodenmüller | Universität Zürich

Further reports about: Biology EPFL Ecohydrology Environmental mountainous terrain terrain

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>