Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Tiny clocks' crystallize understanding of meteorite crashes

29.05.2017

New imaging technology can help date ancient meteorite strikes

Almost two billion years ago, a 10-kilometre-wide chunk of space slammed down into rock near what is now the city of Sudbury. Now, scientists from Western University and the University of Portsmouth are marrying details of that meteorite impact with technology that measures surrounding crystal fragments as a way to date other ancient meteorite strikes.


This rocky outcrop at Sudbury is where the crystals of baddeleyite came from -- crystals that are now being used in a new technology to help date when meteorite strikes took place.

Photo by Desmond Moser/Western University

The pioneering technique is helping add context and insight into the age of meteor impacts. And ultimately, it provides new clues into the beginnings of life on this planet and others, said Desmond (Des) Moser, associate professor in the Departments of Earth Sciences and Geography at Western.

"The underlying theme is, when did life begin? We know that it couldn't happen as long as the surface was being periodically vaporized by meteorite strikes during the solar system's early years and youth -- so if we can figure out when those strikes stopped, we can then understand a bit more about how we got here, and when."

In this instance, researchers have been able to use new imaging techniques to measure the atomic nanostructure of ancient crystals at impact locations, using the 150-kilometre-wide crater at Sudbury as a test site.

Shock waves from that meteorite impact deformed the minerals that made up the rock beneath the crater, including small, tough crystals that contain trace amounts of radioactive uranium and lead. "These can be used as tiny clocks that are the basis for our geologic time scale," Moser said. "But because these crystals are a banged-up mess, conventional methods won't help in extracting age data from them."

An international team using specialized instruments at Western's Zircon and Accessory Phase Laboratory (ZAPLab) and a new instrument called the atom probe, at CAMECA Laboratories in the US, have made that job easier. With the probe, researchers are able to slice and lift out tiny pieces of crystal baddeleyite which is common in terrestrial, Martian and lunar rocks and meteorites.

Then Moser's team -- including researcher Lee White and co-supervisor James Darling of the University of Portsmouth -- measured the deformation in the crystals after sharpening and polishing the pieces into extremely fine needles, then evaporated and identified the atoms and their isotopes layer by layer. The result is a 3D model of the atoms and their positions.

"Using the atom probe to go from the rock to the crystal to its atomic level is like zooming in with the ultimate Google Earth," Moser says. This atomic-scale approach holds great potential in establishing a more accurate chronology of the formation and evolution of planetary crusts.

The team's findings are published in the journal Nature Communications.

###

MEDIA CONTACT: Debora Van Brenk, Media Relations Officer, Western University, 519-661-2111 x85165, or on mobile at 519-318-0657 and deb.vanbrenk@uwo.ca

ABOUT WESTERN: Western University delivers an academic experience second to none. Since 1878, The Western Experience has combined academic excellence with life-long opportunities for intellectual, social and cultural growth in order to better serve our communities. Our research excellence expands knowledge and drives discovery with real-world application. Western attracts individuals with a broad worldview, seeking to study, influence and lead in the international community.

Media Contact

Deb Van Brenk
Deb.VanBrenk@uwo.ca
519-661-2111 x85165

 @mediawesternu

http://www.uwo.ca 

Deb Van Brenk | EurekAlert!

More articles from Earth Sciences:

nachricht Colorado River's connection with the ocean was a punctuated affair
16.11.2017 | University of Oregon

nachricht Researchers create largest, longest multiphysics earthquake simulation to date
14.11.2017 | Gauss Centre for Supercomputing

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

Could this protein protect people against coronary artery disease?

17.11.2017 | Life Sciences

Microbial resident enables beetles to feed on a leafy diet

17.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>