Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Tiny clocks' crystallize understanding of meteorite crashes

29.05.2017

New imaging technology can help date ancient meteorite strikes

Almost two billion years ago, a 10-kilometre-wide chunk of space slammed down into rock near what is now the city of Sudbury. Now, scientists from Western University and the University of Portsmouth are marrying details of that meteorite impact with technology that measures surrounding crystal fragments as a way to date other ancient meteorite strikes.


This rocky outcrop at Sudbury is where the crystals of baddeleyite came from -- crystals that are now being used in a new technology to help date when meteorite strikes took place.

Photo by Desmond Moser/Western University

The pioneering technique is helping add context and insight into the age of meteor impacts. And ultimately, it provides new clues into the beginnings of life on this planet and others, said Desmond (Des) Moser, associate professor in the Departments of Earth Sciences and Geography at Western.

"The underlying theme is, when did life begin? We know that it couldn't happen as long as the surface was being periodically vaporized by meteorite strikes during the solar system's early years and youth -- so if we can figure out when those strikes stopped, we can then understand a bit more about how we got here, and when."

In this instance, researchers have been able to use new imaging techniques to measure the atomic nanostructure of ancient crystals at impact locations, using the 150-kilometre-wide crater at Sudbury as a test site.

Shock waves from that meteorite impact deformed the minerals that made up the rock beneath the crater, including small, tough crystals that contain trace amounts of radioactive uranium and lead. "These can be used as tiny clocks that are the basis for our geologic time scale," Moser said. "But because these crystals are a banged-up mess, conventional methods won't help in extracting age data from them."

An international team using specialized instruments at Western's Zircon and Accessory Phase Laboratory (ZAPLab) and a new instrument called the atom probe, at CAMECA Laboratories in the US, have made that job easier. With the probe, researchers are able to slice and lift out tiny pieces of crystal baddeleyite which is common in terrestrial, Martian and lunar rocks and meteorites.

Then Moser's team -- including researcher Lee White and co-supervisor James Darling of the University of Portsmouth -- measured the deformation in the crystals after sharpening and polishing the pieces into extremely fine needles, then evaporated and identified the atoms and their isotopes layer by layer. The result is a 3D model of the atoms and their positions.

"Using the atom probe to go from the rock to the crystal to its atomic level is like zooming in with the ultimate Google Earth," Moser says. This atomic-scale approach holds great potential in establishing a more accurate chronology of the formation and evolution of planetary crusts.

The team's findings are published in the journal Nature Communications.

###

MEDIA CONTACT: Debora Van Brenk, Media Relations Officer, Western University, 519-661-2111 x85165, or on mobile at 519-318-0657 and deb.vanbrenk@uwo.ca

ABOUT WESTERN: Western University delivers an academic experience second to none. Since 1878, The Western Experience has combined academic excellence with life-long opportunities for intellectual, social and cultural growth in order to better serve our communities. Our research excellence expands knowledge and drives discovery with real-world application. Western attracts individuals with a broad worldview, seeking to study, influence and lead in the international community.

Media Contact

Deb Van Brenk
Deb.VanBrenk@uwo.ca
519-661-2111 x85165

 @mediawesternu

http://www.uwo.ca 

Deb Van Brenk | EurekAlert!

More articles from Earth Sciences:

nachricht Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments
22.01.2018 | Duke University

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>