Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny Airplanes and Subs From University of Florida Laboratory Could Be Next Hurricane Hunters

06.06.2013
Kamran Mohseni envisions a day when the unmanned vehicles in his laboratory at the University of Florida will swarm over, under and through hurricanes to help predict the strength and path of the storms.

The tiny, autonomous craft — some fly, others dart under the waves — can spy on hurricanes at close range without getting blown willy-nilly, while sensors onboard collect and send in real time the data scientists need to predict the intensity and trajectory of storms: pressure, temperature, humidity, location and time.



Photo by: Eric Zamora/University of Florida

GAINESVILLE, Fla. — Autonomous flying drones like this one are the result of research by Kamran Mohseni and graduate researchers with the Institute for Networked Autonomous Systems in the department of mechanical and aerospace engineering at the University of Florida. Photo taken May 30, 2013.

Mohseni said people always ask him how the miniature flying machines — just 6 inches long and about the weight of an iPod Nano — can take on one of the monster storms.

“Our vehicles don’t fight the hurricane; we use the hurricane to take us places,” said Mohseni, the W.P. Bushnell Endowed Professor in the department of mechanical and aerospace engineering and the department of electrical and computer engineering.

The aerial and underwater vehicles can be launched with commands from a laptop hundreds of miles from the eye of a hurricane. Mohseni and a team of graduate students use mathematical models to predict regions in the atmosphere and ocean that can give the vehicles a free ride toward their destination. Once in the vicinity, they can be powered off to wait for a particular current of wind or water. When they detect the current they need for navigation, they power back on, slip into the current, then power off again to conserve fuel as the current carries them to a target location.

In essence, they can go for a fact-gathering ride on hurricane winds and waters.

The devices are a departure from current technology, which uses hurricane reconnaissance aircraft to punch through a storm’s eye wall and release dropsondes, sensors that free-fall and might or might not collect helpful data. Underwater data are even more difficult to collect today, although just as important, considering that the warm, moist air on the ocean surface provides fuel for hurricanes.

Mohseni’s vehicles, even launched hundreds at a time, also reduce the cost of hurricane reconnaissance.

“If you want to blast through a hurricane, you have to build a bigger airplane,” Mohseni said. “[The military] asks for a Batman airplane, a super-duper aircraft that could do everything. But what if you lose one of these super-duper airplanes?

“We are going the opposite direction. We don’t have anything that is super duper. We have cheap sensors, but with a lot of them you can significantly increase the accuracy of your measurements,” said Mohseni, director of UF’s new Institute for Networked Autonomous Systems. “You get super duper on an aggregate level.”

The prototypes produced at the institute are about $250 apiece and are too small and lightweight to cause damage when they hit something, a big consideration in hurricane-force winds and waves. Mohseni does not use a landing strip to test the aerial vehicles; he just tells them to crash, picks them up and flies them again. The carbon fiber shell of the aerial vehicles is wafer-thin but resilient. With proper funding, Mohseni said, the vehicles could be tested in a real-world hurricane in two or three years.

In instances where many are lost — as in a hurricane — the data gained outweighs the cost of the lost vehicles, Mohseni said. Production costs would drop if the vehicles were mass-produced.

The vehicles also are smart. Mohseni developed a cooperative control algorithm that allows them to form a network and learn from the data they take in, for example, by adjusting their course when needed. This feature makes them useful for applications beyond hurricanes.

Extreme environments, such as the polar ice caps, are difficult and hazardous to measure with standard technology. Mohseni said heat transfer through polar ice between the ocean and the air goes almost completely unmeasured today but could be safely measured with the aerial vehicles, which can be launched from a laptop aboard a ship and send back climate data in real time.

Vehicles so tiny, powerful and smart would have been far-fetched even 10 years ago, Mohseni said, but advances in microfabrication, communications, computer processing and computation have led to sophisticated technology in small packages. Nevertheless, Mohseni also has drawn inspiration from seemingly less-sophisticated sources, such as jellyfish.

Mohseni had been studying fluid dynamics, working on propulsion, when a biologist mentioned that jellyfish navigate in much the same way as the mechanical system Mohseni wanted to develop. After studying jellyfish, cuttlefish and squid, Mohseni developed a mathematical model of their thrust and used that model to develop the motors for his underwater sensor vehicles. He now has small submarines capable of autonomous docking using technology mimicking jellyfish and squid, and the sea creatures are common fixtures in his laboratory.

“With biomimicry, learning from what nature does,” Mohseni said, “you just sort of get amazed.”

Source
Kamran Mohseni, mohseni@ufl.edu, 352-273-1834
Writer
Cindy Spence, cindyrspence@ufl.edu, 352-846-2573

Cindy Spence | Newswise
Further information:
http://www.ufl.edu

More articles from Earth Sciences:

nachricht International team reports ocean acidification spreading rapidly in Arctic Ocean
28.02.2017 | University of Delaware

nachricht Secrets of the calcerous ooze revealed
28.02.2017 | Washington University in St. Louis

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>