Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Time running out to save climate record held in unique eastern European Alps glacier

10.12.2010
A preliminary look at an ice field atop the highest mountain in the eastern European Alps suggests that the glacier may hold records of ancient climate extending back as much as a thousand years.

Researchers warn, however, that the record may soon be lost as global warming takes its toll on these high-altitude sites, according to a new study in the Journal of Glaciology.

The glacier, Alto dell’Ortles, is the highest large ice body in the eastern Alps, reaching an altitude of 12,812 feet (3,905 meters) above sea level. It is small, though, measuring barely 0.4 square miles (1.04 square kilometers), and only 10 percent of that is likely to hold a good climate record, the researchers said.

“This is a mountain that is very difficult to climb and that has probably prevented researchers and glaciologists from Europe from going up there to study the ice,” explained Paolo Gabrielli, a research scientist with the School of Earth Sciences and the Byrd Polar Research Center, both at Ohio State University.

“But it is an ideal observatory to have monitored climatic change in the region in the past as well as currently.”

Scientists from Ohio State and five European universities made two exploratory visits to the glacier site in the summers of 2007 and 2008 and then, with logistical support from the Fire Protection and Civil Division of the Autonomous Province of Bolzano, used helicopters to carry the team to the site in 2009.

While there, the researchers drilled a shallow 10-meter core at the surface and dug snow pits to gauge how well the ice had been preserved over time. Later analysis showed that while some surface melting had partially degraded the recent record, ice formed before 1980 is likely to be unharmed.

The team also used ground-penetrating radar to map the thickness of the glacier. Based on that, they hope to be able to retrieve a 70-meter-long core through the ice to bedrock. “There is a possibility that we could find ice reaching back 5,000 years, but that’s just speculation until we actually drill,” Gabrielli said.

The Ortles site is unique in the Eastern Alps, they say, since it offers the chance to reconstruct the human history of the region along with the past ecosystems and climate, and show, perhaps, the relationship between the three.

“We hope to find out how these three factors interacted. We’d like to find evidence of whether climate conditions influenced the development of agriculture here, or even the start of primitive mining and smelting operations. We may even be able to see indications in the ice record of when people came to the region,” he said.

Once full cores were retrieved, the ice samples would be analyzed for a host of climate signals, including oxygen isotope ratios, heavy metals, organic material, sulfates, chlorides, dust, pollen and volcanic ash that offer indications of past climate conditions. That record would then be compared to records from other cores drilled from ice caps around the globe.

The research team has submitted a proposal to the National Science Foundation to support the planned drilling project.

“This is basically the only hope of finding a record of changing climate conditions at high elevations in this part of Europe,” he said, adding, “but unfortunately, time is running out to save this ice.”

Working with Gabrielli on the project were Lonnie Thompson, Mary Davis, and Victor Zagorodnov, all from Ohio State; L. Carturan and G. Dalla Fontana, both from the University of Padova; J. Gabrieli and C. Barbante, both from the University of Venice; R. Dinale from the Autonomous Province of Bolzano; K. Krainer from the University of Innsbruck; H. Hausmann from the Vienna University of Technology, and R. Seppi from the University of Pavia.

Contact: Paolo Garbrielli, (614) 292-6664; Gabrielli.1@osu.edu
Written by Earle Holland, (614) 292-8384; Holland.8@osu.edu

Paolo Garbrielli | EurekAlert!
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht New plate adds plot twist to ancient tectonic tale
15.08.2017 | Rice University

nachricht Global warming will leave different fingerprints on global subtropical anticyclones
14.08.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>