Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Time running out to save climate record held in unique eastern European Alps glacier

10.12.2010
A preliminary look at an ice field atop the highest mountain in the eastern European Alps suggests that the glacier may hold records of ancient climate extending back as much as a thousand years.

Researchers warn, however, that the record may soon be lost as global warming takes its toll on these high-altitude sites, according to a new study in the Journal of Glaciology.

The glacier, Alto dell’Ortles, is the highest large ice body in the eastern Alps, reaching an altitude of 12,812 feet (3,905 meters) above sea level. It is small, though, measuring barely 0.4 square miles (1.04 square kilometers), and only 10 percent of that is likely to hold a good climate record, the researchers said.

“This is a mountain that is very difficult to climb and that has probably prevented researchers and glaciologists from Europe from going up there to study the ice,” explained Paolo Gabrielli, a research scientist with the School of Earth Sciences and the Byrd Polar Research Center, both at Ohio State University.

“But it is an ideal observatory to have monitored climatic change in the region in the past as well as currently.”

Scientists from Ohio State and five European universities made two exploratory visits to the glacier site in the summers of 2007 and 2008 and then, with logistical support from the Fire Protection and Civil Division of the Autonomous Province of Bolzano, used helicopters to carry the team to the site in 2009.

While there, the researchers drilled a shallow 10-meter core at the surface and dug snow pits to gauge how well the ice had been preserved over time. Later analysis showed that while some surface melting had partially degraded the recent record, ice formed before 1980 is likely to be unharmed.

The team also used ground-penetrating radar to map the thickness of the glacier. Based on that, they hope to be able to retrieve a 70-meter-long core through the ice to bedrock. “There is a possibility that we could find ice reaching back 5,000 years, but that’s just speculation until we actually drill,” Gabrielli said.

The Ortles site is unique in the Eastern Alps, they say, since it offers the chance to reconstruct the human history of the region along with the past ecosystems and climate, and show, perhaps, the relationship between the three.

“We hope to find out how these three factors interacted. We’d like to find evidence of whether climate conditions influenced the development of agriculture here, or even the start of primitive mining and smelting operations. We may even be able to see indications in the ice record of when people came to the region,” he said.

Once full cores were retrieved, the ice samples would be analyzed for a host of climate signals, including oxygen isotope ratios, heavy metals, organic material, sulfates, chlorides, dust, pollen and volcanic ash that offer indications of past climate conditions. That record would then be compared to records from other cores drilled from ice caps around the globe.

The research team has submitted a proposal to the National Science Foundation to support the planned drilling project.

“This is basically the only hope of finding a record of changing climate conditions at high elevations in this part of Europe,” he said, adding, “but unfortunately, time is running out to save this ice.”

Working with Gabrielli on the project were Lonnie Thompson, Mary Davis, and Victor Zagorodnov, all from Ohio State; L. Carturan and G. Dalla Fontana, both from the University of Padova; J. Gabrieli and C. Barbante, both from the University of Venice; R. Dinale from the Autonomous Province of Bolzano; K. Krainer from the University of Innsbruck; H. Hausmann from the Vienna University of Technology, and R. Seppi from the University of Pavia.

Contact: Paolo Garbrielli, (614) 292-6664; Gabrielli.1@osu.edu
Written by Earle Holland, (614) 292-8384; Holland.8@osu.edu

Paolo Garbrielli | EurekAlert!
Further information:
http://www.osu.edu

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>