Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tides, Earth's rotation among sources of giant underwater waves

25.02.2010
Waves impact offshore structures, submarine navigation, more

Scientists at the University of Rhode Island are gaining new insight into the mechanisms that generate huge, steep underwater waves that occur between layers of warm and cold water in coastal regions of the world's oceans.

David Farmer, a physical oceanographer and dean of the URI Graduate School of Oceanography, together with student Qiang Li, said that large amplitude, nonlinear internal waves can reach heights of 150 meters or more in the South China Sea, and the effects they have on surface wave fields ensure that they are readily observable from space.

Farmer and Li will report results of their research at the Ocean Sciences Meeting of the American Geophysical Union in Portland, Ore., on February 25.

"The large waves in the South China Sea have attracted a fair bit of attention in recent years," Farmer said, "but much of this has been directed at the interaction of the waves with the sloping continental shelf of mainland China where they break, overturn and produce intense mixing. Our focus is on the way in which they are generated in Luzon Strait, between Taiwan and the Philippines, and the way they evolve as they propagate westwards across the deep ocean basin of the South China Sea."

Farmer and Li studied the evolution of large internal waves occurring at tidal periods generated by currents traversing submarine ridges in Luzon Strait. As these waves travel west through the South China Sea, they steepen and evolve into packets of steep, energetic waves occurring at periods of 20-30 minutes. It is these energetic short period waves that modulate the ocean surface roughness, making their presence observable from satellites in space.

The URI scientists' observations showed that the Earth's rotation modifies internal waves as they travel cross the deep basin. This effect mainly influences the internal waves that form on the 24-hour period of diurnal tides, dispersing the energy and inhibiting the steepening process. Internal waves that form on the semi-diurnal tides are not affected in this way, are more readily steepened and then break into the energetic, short period waves.

Farmer and Li studied internal waves in the South China Sea using pressure equipped inverted echo-sounders, instruments developed by scientists at the University of Rhode Island. From the seafloor, the device transmits an acoustic pulse and then listens for the echo from the sea surface. Sound travels faster through warm water than it does through cold water, so changes in the echo delay allow measurement of the thickness of the warm surface layer, enabling the shape and size of passing internal waves to be recorded.

According to Farmer, nonlinear internal waves impact the ocean in many ways: stirring up sediment on the sea floor, creating hazards to offshore engineering structures, interfering with submarine navigation, and greatly affecting propagation of underwater sound. Internal waves also appear to have significant, if not fully understood, biological impacts, and in shallow water environments they can mix water masses and modify coastal circulation.

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>