Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tibetan Plateau may be older than previously thought

17.08.2012
The growth of high topography on the Tibetan Plateau in Sichuan, China, began much earlier than previously thought, according to an international team of geologists who looked at mountain ranges along the eastern edge of the plateau.

The Indian tectonic plate began its collision with Asia between 55 and 50 million years ago, but "significant topographic relief existed adjacent to the Sichuan Basin prior to the Indo-Asian collision," the researchers report online in Nature Geoscience.

"Most researchers have thought that high topography in eastern Tibet developed during the past 10 to 15 million years, as deep crust beneath the central Tibetan Plateau flowed to the plateau margin, thickening the Earth's crust in this area and causing surface uplift," said Eric Kirby, associate professor of geoscience, Penn State. "Our study suggests that high topography began to develop as early as 30 million years ago, and perhaps was present even earlier."

Kirby, working with Erchie Wang, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, and Kevin Furlong, professor of geosciences, Penn State, and colleagues from Waikato University, New Zealand and Arizona State University, looked at samples taken from the hanging wall of the Yingxiu-Beichuan fault, the primary fault responsible for the 2008, Wenchuan earthquake. The researchers used a variety of methods including the decay rate of uranium and thorium to helium in the minerals apatite and zircon and fission track dating, an analysis of tracks or trails left by decaying uranium in minerals again in apatite and zircon.

"These methods allow us to investigate the thermal regime from about 250 degrees Celsius (482 degrees Fahrenheit) to about 60 degrees (140 degrees Fahrenheit)," said Kirby. "The results show that the rocks cooled relatively slowly during the early and mid-Cenozoic -- from 30 to 50 million years ago -- an indication that topography in the region was undergoing erosion."

The results also suggest that gradual cooling during this time was followed by two episodes of rapid erosion, one beginning 30 to 25 million years ago and one beginning 15 to 10 million years ago that continues today.

"These results challenge the idea that the topographic relief along the margin of the plateau developed entirely in the Late Miocene, 5 to 10 million years ago," said Kirby. "The period of rapid erosion between 25 to 30 million years ago could only be sustained if the mountains were not only present, but actively growing, at this time."

The researchers also note that this implies that fault systems responsible for the 2008 earthquake were also probably active early in the history of the growth of the Tibetan Plateau.

"We are still a long way from completely understanding when and how high topography in Asia developed in response to India-Asia collision," notes Kirby. "However, these results lend support to the idea that much of what we see today in the mountains of China may have developed earlier than we previously thought."

The Chinese National Key Projects Program, the National Natural Science Foundation of China and the National Science Foundation funded this research.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>