Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tibetan Plateau may be older than previously thought

17.08.2012
The growth of high topography on the Tibetan Plateau in Sichuan, China, began much earlier than previously thought, according to an international team of geologists who looked at mountain ranges along the eastern edge of the plateau.

The Indian tectonic plate began its collision with Asia between 55 and 50 million years ago, but "significant topographic relief existed adjacent to the Sichuan Basin prior to the Indo-Asian collision," the researchers report online in Nature Geoscience.

"Most researchers have thought that high topography in eastern Tibet developed during the past 10 to 15 million years, as deep crust beneath the central Tibetan Plateau flowed to the plateau margin, thickening the Earth's crust in this area and causing surface uplift," said Eric Kirby, associate professor of geoscience, Penn State. "Our study suggests that high topography began to develop as early as 30 million years ago, and perhaps was present even earlier."

Kirby, working with Erchie Wang, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, and Kevin Furlong, professor of geosciences, Penn State, and colleagues from Waikato University, New Zealand and Arizona State University, looked at samples taken from the hanging wall of the Yingxiu-Beichuan fault, the primary fault responsible for the 2008, Wenchuan earthquake. The researchers used a variety of methods including the decay rate of uranium and thorium to helium in the minerals apatite and zircon and fission track dating, an analysis of tracks or trails left by decaying uranium in minerals again in apatite and zircon.

"These methods allow us to investigate the thermal regime from about 250 degrees Celsius (482 degrees Fahrenheit) to about 60 degrees (140 degrees Fahrenheit)," said Kirby. "The results show that the rocks cooled relatively slowly during the early and mid-Cenozoic -- from 30 to 50 million years ago -- an indication that topography in the region was undergoing erosion."

The results also suggest that gradual cooling during this time was followed by two episodes of rapid erosion, one beginning 30 to 25 million years ago and one beginning 15 to 10 million years ago that continues today.

"These results challenge the idea that the topographic relief along the margin of the plateau developed entirely in the Late Miocene, 5 to 10 million years ago," said Kirby. "The period of rapid erosion between 25 to 30 million years ago could only be sustained if the mountains were not only present, but actively growing, at this time."

The researchers also note that this implies that fault systems responsible for the 2008 earthquake were also probably active early in the history of the growth of the Tibetan Plateau.

"We are still a long way from completely understanding when and how high topography in Asia developed in response to India-Asia collision," notes Kirby. "However, these results lend support to the idea that much of what we see today in the mountains of China may have developed earlier than we previously thought."

The Chinese National Key Projects Program, the National Natural Science Foundation of China and the National Science Foundation funded this research.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>