Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three NASA satellites dissect powerful Typhoon Neoguri

09.07.2014

NASA's Aqua, TRMM and CloudSat dissected powerful Typhoon Neoguri as it moved through the Northwestern Pacific Ocean and affected southern Japan. The three satellites gathered data on rainfall, cloud heights, cloud extent, cloud temperatures, the size of the eye, and what was happening in the eye.

Typhoon Neoguri formed in the western Pacific Ocean south-southeast of Guam on July 3, 2014. Since then Neoguri has become increasingly more powerful and dangerous. The word Neoguri means "raccoon" in Korean. On July 5 at 0426 UTC (12:26 a.m. EDT) NASA's CloudSat satellite passed over Typhoon Neoguri when its maximum sustained winds were near 110 knots (127 mph).


NASA's TRMM Satellite Sees Heavy Rainfall in Typhoon Neoguri On July 7 at 2:41 a.m. EDT the TRMM satellite had a near perfect view as it passed above the center of Typhoon Neoguri. Heaviest rainfall was occurring at over 106 mm (4.2) inches per hour in feeder bands southeast of Neoguri's eye.

Credit: NASA/SSAI, Hal Pierce

CloudSat passed over the western edge of the center of the storm revealing a portion of eye and eye wall structure. CloudSat found that a canopy or covering of high, wispy cirrus clouds covered the eye, and that there was a small area of cumulus and stratocumulus clouds near the surface.

NASA's TRMM Satellite Sees Heavy Rainfall in Typhoon Neoguri On July 7 at 2:41 a.m. EDT the TRMM satellite had a near perfect view as it passed above the center of Typhoon Neoguri. Heaviest rainfall was occurring at over 106 mm (4.2) inches per hour in feeder bands southeast of Neoguri's eye.

When CloudSat passed overhead, Typhoon Neoguri had a notably large eye with meso vorticies (small scale rotational areas usually found in an intensifying tropical cyclone as was the case with Neoguri) in the inner eye. CloudSat passed over Neoguri from northwest to southeast and cut through the center of the storm.

CloudSat found a wide area of moderate to heavy rainfall and convection (rising air that forms thunderstorms) south of the eyewall and outer bands. CloudSat also provided a side view of the extent of Neoguri's clouds, and found the cirrus canopy extends hundreds of miles/kilometers outward from the center.

On July 7 at 0641 UTC (2:41 a.m. EDT) NASA and the Japan Aerospace Exploration Agency's Tropical Rainfall Measuring Mission or TRMM satellite had a near perfect view as it passed above the center of Typhoon Neoguri. At that time, Neoguri was classified as a category four typhoon on the Saffir-Simpson hurricane scale with sustained winds estimates at 135 knots (155 mph).

Rainfall from TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) revealed that Neoguri's nearly circular eye wall contained intense thunderstorms. TRMM PR found that the heaviest precipitation was occurring at a rate of over 106 mm (about 4.2) inches per hour in feeder bands southeast of Neoguri's eye.

At NASA's Goddard Space Flight Center in Greenbelt, Maryland, TRMM's Precipitation Radar data was used to create a 3-D simulated view that showed Neoguri's circular eye wall was unbroken and contained storms that were uniformly reaching heights of 13 to 15 km (8 to 9.3 miles).

On July 8 at 0500 UTC (1 a.m. EDT), NASA's Aqua satellite passed over Typhoon Neoguri when it was in the East China Sea. The Moderate Resolution Imaging Spectroradiometer or MODIS instrument captured a visible image of the storm that shows some cirrus clouds in a mostly clear eye. Neoguri's center was due west of Kume Island. Kume Island is a populated volcanic island that is part of the Okinawa Islands and the Okinawa Prefecture, Japan.

As Aqua passed over Neoguri, another instrument aboard captured infrared data on the storm's clouds and temperatures. The Atmospheric Infrared Sounder or AIRS instrument found cold cloud tops in powerful thunderstorms around the eyewall (wall of thunderstorms around the storm's open center) were as cold as -70C to -80C (-94F to -112F) degrees. AIRS showed an eye that was about 25 nautical-miles (28.7 miles/46.3 km) wide.

On July 8 at 1500 UTC (11 a.m. EDT) Neoguri's maximum sustained winds had dropped to 105 knots. It was centered near 28.3 north latitude and 125.8 east longitude, about 379 nautical miles (436 miles/702 miles) southwest of Sasebo, Japan. The Joint Typhoon Warning Center or JTWC noted that Neoguri was moving to the north at 13 knots (14.9 mph/24.0 kph), but forecasts a change to the northeast. Neoguri is creating large and dangerous swells with wave heights to 37 feet (11.2 meters).

The JTWC predicts Typhoon Neoguri will turn to the east and make landfall in southern Kyushu slightly after 0000 UTC on July 10 (8 p.m. EDT on July 9).

Rob Gutro | Eurek Alert!

Further reports about: CloudSat EDT Flight NASA TRMM Typhoon UTC clouds knots satellite satellites thunderstorms winds

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>