Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three NASA satellites dissect powerful Typhoon Neoguri

09.07.2014

NASA's Aqua, TRMM and CloudSat dissected powerful Typhoon Neoguri as it moved through the Northwestern Pacific Ocean and affected southern Japan. The three satellites gathered data on rainfall, cloud heights, cloud extent, cloud temperatures, the size of the eye, and what was happening in the eye.

Typhoon Neoguri formed in the western Pacific Ocean south-southeast of Guam on July 3, 2014. Since then Neoguri has become increasingly more powerful and dangerous. The word Neoguri means "raccoon" in Korean. On July 5 at 0426 UTC (12:26 a.m. EDT) NASA's CloudSat satellite passed over Typhoon Neoguri when its maximum sustained winds were near 110 knots (127 mph).


NASA's TRMM Satellite Sees Heavy Rainfall in Typhoon Neoguri On July 7 at 2:41 a.m. EDT the TRMM satellite had a near perfect view as it passed above the center of Typhoon Neoguri. Heaviest rainfall was occurring at over 106 mm (4.2) inches per hour in feeder bands southeast of Neoguri's eye.

Credit: NASA/SSAI, Hal Pierce

CloudSat passed over the western edge of the center of the storm revealing a portion of eye and eye wall structure. CloudSat found that a canopy or covering of high, wispy cirrus clouds covered the eye, and that there was a small area of cumulus and stratocumulus clouds near the surface.

NASA's TRMM Satellite Sees Heavy Rainfall in Typhoon Neoguri On July 7 at 2:41 a.m. EDT the TRMM satellite had a near perfect view as it passed above the center of Typhoon Neoguri. Heaviest rainfall was occurring at over 106 mm (4.2) inches per hour in feeder bands southeast of Neoguri's eye.

When CloudSat passed overhead, Typhoon Neoguri had a notably large eye with meso vorticies (small scale rotational areas usually found in an intensifying tropical cyclone as was the case with Neoguri) in the inner eye. CloudSat passed over Neoguri from northwest to southeast and cut through the center of the storm.

CloudSat found a wide area of moderate to heavy rainfall and convection (rising air that forms thunderstorms) south of the eyewall and outer bands. CloudSat also provided a side view of the extent of Neoguri's clouds, and found the cirrus canopy extends hundreds of miles/kilometers outward from the center.

On July 7 at 0641 UTC (2:41 a.m. EDT) NASA and the Japan Aerospace Exploration Agency's Tropical Rainfall Measuring Mission or TRMM satellite had a near perfect view as it passed above the center of Typhoon Neoguri. At that time, Neoguri was classified as a category four typhoon on the Saffir-Simpson hurricane scale with sustained winds estimates at 135 knots (155 mph).

Rainfall from TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) revealed that Neoguri's nearly circular eye wall contained intense thunderstorms. TRMM PR found that the heaviest precipitation was occurring at a rate of over 106 mm (about 4.2) inches per hour in feeder bands southeast of Neoguri's eye.

At NASA's Goddard Space Flight Center in Greenbelt, Maryland, TRMM's Precipitation Radar data was used to create a 3-D simulated view that showed Neoguri's circular eye wall was unbroken and contained storms that were uniformly reaching heights of 13 to 15 km (8 to 9.3 miles).

On July 8 at 0500 UTC (1 a.m. EDT), NASA's Aqua satellite passed over Typhoon Neoguri when it was in the East China Sea. The Moderate Resolution Imaging Spectroradiometer or MODIS instrument captured a visible image of the storm that shows some cirrus clouds in a mostly clear eye. Neoguri's center was due west of Kume Island. Kume Island is a populated volcanic island that is part of the Okinawa Islands and the Okinawa Prefecture, Japan.

As Aqua passed over Neoguri, another instrument aboard captured infrared data on the storm's clouds and temperatures. The Atmospheric Infrared Sounder or AIRS instrument found cold cloud tops in powerful thunderstorms around the eyewall (wall of thunderstorms around the storm's open center) were as cold as -70C to -80C (-94F to -112F) degrees. AIRS showed an eye that was about 25 nautical-miles (28.7 miles/46.3 km) wide.

On July 8 at 1500 UTC (11 a.m. EDT) Neoguri's maximum sustained winds had dropped to 105 knots. It was centered near 28.3 north latitude and 125.8 east longitude, about 379 nautical miles (436 miles/702 miles) southwest of Sasebo, Japan. The Joint Typhoon Warning Center or JTWC noted that Neoguri was moving to the north at 13 knots (14.9 mph/24.0 kph), but forecasts a change to the northeast. Neoguri is creating large and dangerous swells with wave heights to 37 feet (11.2 meters).

The JTWC predicts Typhoon Neoguri will turn to the east and make landfall in southern Kyushu slightly after 0000 UTC on July 10 (8 p.m. EDT on July 9).

Rob Gutro | Eurek Alert!

Further reports about: CloudSat EDT Flight NASA TRMM Typhoon UTC clouds knots satellite satellites thunderstorms winds

More articles from Earth Sciences:

nachricht Tracking the amount of sea ice from the Greenland ice sheet
28.09.2016 | Ca' Foscari University of Venice

nachricht A perfect sun-storm
28.09.2016 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>