Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thin Clouds Drove Greenland’s Record-Breaking 2012 Ice Melt

04.04.2013
If the sheet of ice covering Greenland were to melt in its entirety tomorrow, global sea levels would rise by 24 feet.

Three million cubic kilometers of ice won’t wash into the ocean overnight, but researchers have been tracking increasing melt rates since at least 1979. Last summer, however, the melt was so large that similar events show up in ice core records only once every 150 years or so over the last four millennia.

“In July 2012, a historically rare period of extended surface melting raised questions about the frequency and extent of such events,” says Ralf Bennartz, professor of atmospheric and oceanic sciences and scientist at the University of Wisconsin–Madison‘s Space Science and Engineering Center. “Of course, there is more than one cause for such widespread change. We focused our study on certain kinds of low-level clouds.”

In a study to be published in the April 4 issue of the journal Nature, Bennartz and collaborators describe the moving parts that led to the melt, which was observed from the ICECAPS experiment funded by the National Science Foundation and run by UW–Madison and several partners atop the Greenland ice sheet.

“The July 2012 event was triggered by an influx of unusually warm air, but that was only one factor,” says Dave Turner, physical scientist at the National Oceanic and Atmospheric Administration’s National Severe Storms Laboratory. “In our paper we show that low-level clouds were instrumental in pushing temperatures up above freezing.”

Low-level clouds typically reflect solar energy back into space, and snow cover also tends to bounce energy from the sun back from the Earth’s surface.

Under particular temperature conditions, however, clouds can be both thin enough to allow solar energy to pass through to the surface and thick enough to “trap” some of that heat even if it is turned back by snow and ice on the ground.

While low, thin cloud cover is just one element within a complex interaction of wind speed, turbulence and humidity, the extra heat energy trapped close to the surface can push temperatures above freezing.

That is exactly what happened in July 2012 over large parts of the Greenland ice sheet, and similar conditions may help answer climate conundrums elsewhere.

“We know that these thin, low-level clouds occur frequently,” Bennartz says. “Our results may help to explain some of the difficulties that current global climate models have in simulating the Arctic surface energy budget.”

Current climate models tend to underestimate the occurrence of the clouds ICECAPS researchers found, limiting those models’ ability to predict cloud response to Arctic climate change and possible feedback like spiking rates of ice melt.

By using a combination of surface-based observations, remote sensing data, and surface energy-balance models, the study not only delineates the effect of clouds on ice melting, but also shows that this type of cloud is common over both Greenland and across the Arctic, according to Bennartz.

“Above all, this study highlights the importance of continuous and detailed ground-based observations over the Greenland ice sheet and elsewhere,” he says. “Only such detailed observations will lead to a better understanding of the processes that drive Arctic climate. ”

NOAA’s Earth System Research Laboratory and the Department of Energy’s Atmospheric Radiation Measurement program contributed to the work at NSF’s Summit Station, supporting collaborating scientists Matt Shupe of the University of Colorado Boulder, ICECAPS principal investigator Von Walden of the University of Idaho, Konrad Steffen of the Swiss Federal Institute for Forest, Snow and Landscape Research, UW–Madison’s Nate Miller and Mark Kulie, and graduate students Claire Pettersen (UW-Madison) and Chris Cox (Idaho).

— Mark Hobson, 608-263-3373, mark.hobson@ssec.wisc.edu

Mark Hobson | Newswise
Further information:
http://www.wisc.edu

More articles from Earth Sciences:

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

nachricht World's first solar fuels reactor for night passes test
21.02.2018 | SolarPACES

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>