Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thin Clouds Drove Greenland’s Record-Breaking 2012 Ice Melt

04.04.2013
If the sheet of ice covering Greenland were to melt in its entirety tomorrow, global sea levels would rise by 24 feet.

Three million cubic kilometers of ice won’t wash into the ocean overnight, but researchers have been tracking increasing melt rates since at least 1979. Last summer, however, the melt was so large that similar events show up in ice core records only once every 150 years or so over the last four millennia.

“In July 2012, a historically rare period of extended surface melting raised questions about the frequency and extent of such events,” says Ralf Bennartz, professor of atmospheric and oceanic sciences and scientist at the University of Wisconsin–Madison‘s Space Science and Engineering Center. “Of course, there is more than one cause for such widespread change. We focused our study on certain kinds of low-level clouds.”

In a study to be published in the April 4 issue of the journal Nature, Bennartz and collaborators describe the moving parts that led to the melt, which was observed from the ICECAPS experiment funded by the National Science Foundation and run by UW–Madison and several partners atop the Greenland ice sheet.

“The July 2012 event was triggered by an influx of unusually warm air, but that was only one factor,” says Dave Turner, physical scientist at the National Oceanic and Atmospheric Administration’s National Severe Storms Laboratory. “In our paper we show that low-level clouds were instrumental in pushing temperatures up above freezing.”

Low-level clouds typically reflect solar energy back into space, and snow cover also tends to bounce energy from the sun back from the Earth’s surface.

Under particular temperature conditions, however, clouds can be both thin enough to allow solar energy to pass through to the surface and thick enough to “trap” some of that heat even if it is turned back by snow and ice on the ground.

While low, thin cloud cover is just one element within a complex interaction of wind speed, turbulence and humidity, the extra heat energy trapped close to the surface can push temperatures above freezing.

That is exactly what happened in July 2012 over large parts of the Greenland ice sheet, and similar conditions may help answer climate conundrums elsewhere.

“We know that these thin, low-level clouds occur frequently,” Bennartz says. “Our results may help to explain some of the difficulties that current global climate models have in simulating the Arctic surface energy budget.”

Current climate models tend to underestimate the occurrence of the clouds ICECAPS researchers found, limiting those models’ ability to predict cloud response to Arctic climate change and possible feedback like spiking rates of ice melt.

By using a combination of surface-based observations, remote sensing data, and surface energy-balance models, the study not only delineates the effect of clouds on ice melting, but also shows that this type of cloud is common over both Greenland and across the Arctic, according to Bennartz.

“Above all, this study highlights the importance of continuous and detailed ground-based observations over the Greenland ice sheet and elsewhere,” he says. “Only such detailed observations will lead to a better understanding of the processes that drive Arctic climate. ”

NOAA’s Earth System Research Laboratory and the Department of Energy’s Atmospheric Radiation Measurement program contributed to the work at NSF’s Summit Station, supporting collaborating scientists Matt Shupe of the University of Colorado Boulder, ICECAPS principal investigator Von Walden of the University of Idaho, Konrad Steffen of the Swiss Federal Institute for Forest, Snow and Landscape Research, UW–Madison’s Nate Miller and Mark Kulie, and graduate students Claire Pettersen (UW-Madison) and Chris Cox (Idaho).

— Mark Hobson, 608-263-3373, mark.hobson@ssec.wisc.edu

Mark Hobson | Newswise
Further information:
http://www.wisc.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>