Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New theory of why midcontinent faults produce earthquakes

02.08.2010
A new theory developed at Purdue University may solve the mystery of why the New Madrid fault, which lies in the middle of the continent and not along a tectonic plate boundary, produces large earthquakes such as the ones that shook the eastern United States in 1811 and 1812.

The theory suggests that the energy necessary to produce the magnitude 7-7.5 earthquakes came from stored stress built up in the Earth's crust long ago. Rapid erosion from the Mississippi River at the end of the last ice age reduced forces that had kept the New Madrid fault from slipping and triggered the temblors.

Eric Calais, the Purdue professor of earth and atmospheric sciences who led the study, said the theory is the first to explain how a fault could have had large earthquakes in the recent past but today show no signs of accumulating the forces needed to produce another earthquake.

“We understand why earthquakes happen at the contact between tectonic plates, like in California, but it has always been a puzzle as to why earthquakes occur in the middle of the continent as well, and with no visible surface deformation,” Calais said. “Our theory links an external climate-driven process, the melting of the ice sheet, and earthquakes."

Calais and others have analyzed the fault for more than 10 years using global position system measurements to capture movements of the Earth's surface that represent a buildup of energy and have traditionally been used to evaluate the potential for an earthquake. As the data was collected, it became evident that such motion was not occurring along the New Madrid fault.

Andrew Freed, co-author of the paper and an associate professor of earth and atmospheric sciences at Purdue, said with no discernable motions at the surface to explain how the requisite crustal stresses could have built up in this area, these stresses must be left over from past tectonic processes that are no longer active.

"The only way to reconcile the fact that this part of the continent is not deforming but is producing earthquakes is for the stresses to have built up long ago, " Freed said. "Old geologic processes, such as the opening of the Atlantic and the uplift of the Rocky Mountains, may have squeezed the Midwest. The resulting stress remained stored for millions of years until uplift associated with the Mississippi erosion event led to the unclamping of old faults lying beneath."

If this area of the North American continent is preloaded with the stress that can lead to earthquakes, it will be difficult to assess earthquake risk in the region.

The fault segments that ruptured are unlikely to have future earthquakes as there is no current means to reload them, but there remains a risk that other faults in the region could experience large earthquakes in the future, Calais said.

"Unfortunately, this stored stress is invisible to us, and the usual methods of measuring strain and deformation to evaluate a spot's potential for an earthquake may not apply to this region," Calais said. "Under these conditions, once an earthquake occurs on a given fault, it’s done; but this also means that other faults in the region that appear quiet today may still be triggered."

Details of the team's work, which was supported by a grant from the U.S. Geological Survey, appear in a paper in the current issue of Nature.

For a period from 16,000 to 10,000 years ago as the ice sheet melted, it steadily rushed water down the Mississippi River. As the river flowed, it washed away sediments and removed weight pressing down on the Earth’s crust. With this relatively rapid removal of weight, the crust rebounded and bulged slightly up from its previous position. This slight arching caused the top layers of the Earth’s crust to be stretched and the bottom layers to be compacted, exerting forces on the preexisting faults sufficient to trigger the earthquakes that began more than 3,000 years ago in the New Madrid region, culminating with the 1811-1812 events, Calais said.

More data needs to be collected to see whether this mechanism applies to similar seismic zones in the world, he said.

Additional paper co-authors include Roy Van Arsdale of the University of Memphis and Seth Stein of Northwestern University.

Writer: Elizabeth K. Gardner, 765-494-2081, ekgardner@purdue.edu
Sources: Eric Calais, 765-496-2915, ecalais@purdue.edu
Andrew Freed, 765-496-3738, freed@purdue.edu

Elizabeth K. Gardner | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>