Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New theory on largest known mass extinction in the history of the earth

Did volatile halogenated gases from giant salt lakes at the end of the Permian Age lead to a mass extinction of species?

The team of researchers from Russia, Austria, South Africa and Germany investigated whether a process that has been taking place since primordial times on earth could have led to global mass extinctions, particularly at the end of the Permian.

The starting point for this theory was their discovery in the south of Russia and South Africa that microbial processes in present-day salt lakes naturally produce and emit highly volatile halocarbons such as chloroform, trichloroethene, and tetrachloroethene.

They transcribed these findings to the Zechstein Sea, which about 250 million years ago in the Permian Age, was situated about where present day Central Europe is. The Zechstein Sea with a total surface area of around 600.000 km2 was almost as large as France is today.

The hyper saline flat sea at that time was exposed to a predominantly dry continental desert climate and intensive solar radiation – like today’s salt seas. "Consequently, we assume that the climatic, geo-chemical and microbial conditions in the area of the Zechstein Sea were comparable with those of the present day salt seas that we investigated," Weißflog said.

In their current publication the authors explain the similarities between the complex processes of the CO2-cycle in the Permian Age as well as between global warming from that time and at present. Based on comparable calculations from halogenated gas emissions in the atmosphere from present-day salt seas in the south of Russia, the scientists calculated that from the Zechstein Sea alone an annual VHC emissions rate of at least 1.3 million tonnes of trichloroethene, 1.3 million tonnes of tetrachloroethene, 1.1 million tonnes of chloroform as well as 0.050 million tonnes of methyl chloroform can be assumed.

By comparison, the annual global industrial emissions of trichloroethene and tetrachloroethene amount to only about 20 percent of that respectively, and only about 5 percent of the chloroform from the emissions calculated for the Zechstein Sea by the scientists. Incidentally, the industrial production of methyl chloroform, which depletes the ozone layer, has been banned since 1987 by regulation of the Montreal Protocol. “Using steppe plant species we were able to prove that halogenated gases contribute to speeding up desertification: The combination of stress induced by dryness and the simultaneous chemical stressor "halogenated hydrocarbons" disproportionately damages and destabilize the plants and speeds up the process of erosion," Dr. Karsten Kotte from the University of Heidelberg explained.

Based on both of these findings the researchers were able to form their new hypothesis: At the end of the Permian Age the emissions of halogenated gases from the Zechstein Sea and other salt seas were responsible in a complex chain of events for the world's largest mass extinction in the history of the earth, in which about 90 percent of the animal and plant species of that time became extinct.

According to the forecast from the International Panel on Climate Change (IPCC), increasing temperatures and aridity due to climate change will also speed up desertification, increasing with it the number and surface area of salt seas, salt lagoons and salt marshlands. Moreover, this will then lead to an increase in naturally formed halogenated gases. The phytotoxic effects of these substances become intensified in conjunction with other atmospheric pollutants and at the same time increasing dryness and exponentiate the eco-toxicological consequences of climate change.

The new theory could be like a jigsaw piece that contributes to solving the puzzle of the largest mass extinction in the history of the earth. "The question as to whether the halogenated gases from the giant salt lakes alone were responsible for it or whether it was a combination of various factors with volcanic eruptions, the impact of asteroids, or methane hydrate equally playing their role still remains unanswered," Ludwig Weißflog said. What is fact however is that the effects of salt seas were previously underestimated. In their publication the researchers working with Dr. Ludwig Weißflog from the UFZ and Dr. Karsten Kotte from the University of Heidelberg want to prove that recent salt lakes and salt deserts of south-east Europe, Middle Asia, Australia, Africa, America can not only influence the regional but also the global climate. The new findings on the effects of these halogenated gases are important for revising climate models, which form the basis for climate forecasts.

L. Weissflog, N.F. Elanskii, K. Kotte, F. Keppler, A.
Pfennigsdorff, K. Lange E. Putz, L.V. Lisitzina (2009): O
wosmojnoi roli galogensoderjaschtschaich gasow w ismenenii
sostojanija atmosferi i prirodnoi sredi w posdnii permskii
period. Dokladi Akademii Nauk, 424:1-6 (in Russian).
L. Weissflog, N.F. Elanskii, K. Kotte, F. Keppler, A.
Pfennigsdorff, C.A. Lange, E. Putz, L.V. Lisitzina (2009):
Late Permian Changes in Conditions of the Atmosphere and
Enviroments Caused by Halogenated Gases. Dokladi Earth
Sciences, Vol. 424, No. 6, pp.818-823 (in English).
DOI: 10.1134/S1028334X09020263
More Information:
Dr Ludwig Weißflog
Helmholtz Centre for Environmental Research (UFZ)
Dr Karsten Kotte
Institute for Environmental geochemistry
Ruprecht-Karls University Heidelberg
Phone: +49-6221-544-803
Tilo Arnhold (UFZ press officer)
Phone: +49-341-235-2278
Press release (February, 11th 2005): "Micro-organisms in salt
lakes produce chlorinated air pollutants. Discovery of a
new natural factor in desertification"
Further Publications:
Weissflog, L., C. A. Lange, A. Pfennigsdorff, K. Kotte, N.
Elansky, L. Lisitzyna, E. Putz, and G. Krueger (2005).
Sediments of salt lakes as a new source of volatile highly
chlorinated C1/C2 hydrocarbons, Geophys. Res. Lett., 32,
L01401 DOI:10.1029/2004GL020807
Weißflog, L., Krueger, G., Elansky, N., Putz, E., Lange, C.
A., Lisitzina, L., Pfennigsdorff, A., Kotte, K. (2006). The
phytotoxic effect of C1/C2-halocarbons and trichloroacetic
acid on the steppe plant Artemisia lerchiana, Chemosphere
65 (6), 975-980
At the Helmholtz Centre for Environmental Research (UFZ) scientists research the causes and consequences of far-reaching environmental changes. They study water resources, biological diversity, the consequences of climate change and adaptation possibilities, environmental and biotechnologies, bio energy, the behaviour of chemicals in the environment and their effect on health, as well as

modelling and social science issues. Their guiding research principle is supporting the sustainable use of natural resources and helping to secure these basic requirements of life over the long term under the influence of global change. The UFZ employs 900 people at its sites in Leipzig, Halle and Magdeburg. It is funded by the German government and by the states of Saxony and Saxony-Anhalt. The Helmholtz Association helps solve major, pressing challenges facing society, science and the economy with top scientific achievements in six research areas: Energy, Earth and Environment, Health, Key Technologies, Structure of Matter, Transport and Space. With 28,000 employees in 15 research centres and an annual budget of around EUR 2.4 billion, the Helmholtz Association is Germany’s largest scientific organisation. Its work follows in the tradition of the great natural scientist Hermann von Helmholtz(1821-1894).

Tilo Arnhold | Helmholtz-Zentrum
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>