Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New theory on largest known mass extinction in the history of the earth

30.03.2009
Did volatile halogenated gases from giant salt lakes at the end of the Permian Age lead to a mass extinction of species?

The team of researchers from Russia, Austria, South Africa and Germany investigated whether a process that has been taking place since primordial times on earth could have led to global mass extinctions, particularly at the end of the Permian.

The starting point for this theory was their discovery in the south of Russia and South Africa that microbial processes in present-day salt lakes naturally produce and emit highly volatile halocarbons such as chloroform, trichloroethene, and tetrachloroethene.

They transcribed these findings to the Zechstein Sea, which about 250 million years ago in the Permian Age, was situated about where present day Central Europe is. The Zechstein Sea with a total surface area of around 600.000 km2 was almost as large as France is today.

The hyper saline flat sea at that time was exposed to a predominantly dry continental desert climate and intensive solar radiation – like today’s salt seas. "Consequently, we assume that the climatic, geo-chemical and microbial conditions in the area of the Zechstein Sea were comparable with those of the present day salt seas that we investigated," Weißflog said.

In their current publication the authors explain the similarities between the complex processes of the CO2-cycle in the Permian Age as well as between global warming from that time and at present. Based on comparable calculations from halogenated gas emissions in the atmosphere from present-day salt seas in the south of Russia, the scientists calculated that from the Zechstein Sea alone an annual VHC emissions rate of at least 1.3 million tonnes of trichloroethene, 1.3 million tonnes of tetrachloroethene, 1.1 million tonnes of chloroform as well as 0.050 million tonnes of methyl chloroform can be assumed.

By comparison, the annual global industrial emissions of trichloroethene and tetrachloroethene amount to only about 20 percent of that respectively, and only about 5 percent of the chloroform from the emissions calculated for the Zechstein Sea by the scientists. Incidentally, the industrial production of methyl chloroform, which depletes the ozone layer, has been banned since 1987 by regulation of the Montreal Protocol. “Using steppe plant species we were able to prove that halogenated gases contribute to speeding up desertification: The combination of stress induced by dryness and the simultaneous chemical stressor "halogenated hydrocarbons" disproportionately damages and destabilize the plants and speeds up the process of erosion," Dr. Karsten Kotte from the University of Heidelberg explained.

Based on both of these findings the researchers were able to form their new hypothesis: At the end of the Permian Age the emissions of halogenated gases from the Zechstein Sea and other salt seas were responsible in a complex chain of events for the world's largest mass extinction in the history of the earth, in which about 90 percent of the animal and plant species of that time became extinct.

According to the forecast from the International Panel on Climate Change (IPCC), increasing temperatures and aridity due to climate change will also speed up desertification, increasing with it the number and surface area of salt seas, salt lagoons and salt marshlands. Moreover, this will then lead to an increase in naturally formed halogenated gases. The phytotoxic effects of these substances become intensified in conjunction with other atmospheric pollutants and at the same time increasing dryness and exponentiate the eco-toxicological consequences of climate change.

The new theory could be like a jigsaw piece that contributes to solving the puzzle of the largest mass extinction in the history of the earth. "The question as to whether the halogenated gases from the giant salt lakes alone were responsible for it or whether it was a combination of various factors with volcanic eruptions, the impact of asteroids, or methane hydrate equally playing their role still remains unanswered," Ludwig Weißflog said. What is fact however is that the effects of salt seas were previously underestimated. In their publication the researchers working with Dr. Ludwig Weißflog from the UFZ and Dr. Karsten Kotte from the University of Heidelberg want to prove that recent salt lakes and salt deserts of south-east Europe, Middle Asia, Australia, Africa, America can not only influence the regional but also the global climate. The new findings on the effects of these halogenated gases are important for revising climate models, which form the basis for climate forecasts.

Publication:
L. Weissflog, N.F. Elanskii, K. Kotte, F. Keppler, A.
Pfennigsdorff, K. Lange E. Putz, L.V. Lisitzina (2009): O
wosmojnoi roli galogensoderjaschtschaich gasow w ismenenii
sostojanija atmosferi i prirodnoi sredi w posdnii permskii
period. Dokladi Akademii Nauk, 424:1-6 (in Russian).
http://www.maikonline.com/maik/showArticle.do?auid=VAFR1OI7XN
L. Weissflog, N.F. Elanskii, K. Kotte, F. Keppler, A.
Pfennigsdorff, C.A. Lange, E. Putz, L.V. Lisitzina (2009):
Late Permian Changes in Conditions of the Atmosphere and
Enviroments Caused by Halogenated Gases. Dokladi Earth
Sciences, Vol. 424, No. 6, pp.818-823 (in English).
DOI: 10.1134/S1028334X09020263
http://www.springerlink.com/content/t8n5118h4w180566/?p=8383a07971444193bea480c152b84936&pi=25
More Information:
Dr Ludwig Weißflog
Helmholtz Centre for Environmental Research (UFZ)
http://www.ufz.de/index.php?de=6784
and
Dr Karsten Kotte
Institute for Environmental geochemistry
Ruprecht-Karls University Heidelberg
Phone: +49-6221-544-803
http://umwelt-geochemie.uni-hd.de/personen_ger.htm
or
Tilo Arnhold (UFZ press officer)
Phone: +49-341-235-2278
E-mail: presse@ufz.de
Links:
Press release (February, 11th 2005): "Micro-organisms in salt
lakes produce chlorinated air pollutants. Discovery of a
new natural factor in desertification"
http://www.ufz.de/index.php?en=5329
Further Publications:
Weissflog, L., C. A. Lange, A. Pfennigsdorff, K. Kotte, N.
Elansky, L. Lisitzyna, E. Putz, and G. Krueger (2005).
Sediments of salt lakes as a new source of volatile highly
chlorinated C1/C2 hydrocarbons, Geophys. Res. Lett., 32,
L01401 DOI:10.1029/2004GL020807
Weißflog, L., Krueger, G., Elansky, N., Putz, E., Lange, C.
A., Lisitzina, L., Pfennigsdorff, A., Kotte, K. (2006). The
phytotoxic effect of C1/C2-halocarbons and trichloroacetic
acid on the steppe plant Artemisia lerchiana, Chemosphere
65 (6), 975-980
DOI:10.1016/j.chemosphere.2006.03.039
At the Helmholtz Centre for Environmental Research (UFZ) scientists research the causes and consequences of far-reaching environmental changes. They study water resources, biological diversity, the consequences of climate change and adaptation possibilities, environmental and biotechnologies, bio energy, the behaviour of chemicals in the environment and their effect on health, as well as

modelling and social science issues. Their guiding research principle is supporting the sustainable use of natural resources and helping to secure these basic requirements of life over the long term under the influence of global change. The UFZ employs 900 people at its sites in Leipzig, Halle and Magdeburg. It is funded by the German government and by the states of Saxony and Saxony-Anhalt. The Helmholtz Association helps solve major, pressing challenges facing society, science and the economy with top scientific achievements in six research areas: Energy, Earth and Environment, Health, Key Technologies, Structure of Matter, Transport and Space. With 28,000 employees in 15 research centres and an annual budget of around EUR 2.4 billion, the Helmholtz Association is Germany’s largest scientific organisation. Its work follows in the tradition of the great natural scientist Hermann von Helmholtz(1821-1894).

Tilo Arnhold | Helmholtz-Zentrum
Further information:
http://www.ufz.de/index.php?en=17896

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>