Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The rush to rain

17.03.2014

Dust kicked up in Asia strengthens Indian monsoon within a week

 A new analysis of satellite data reveals a link between dust in North Africa and West Asia and stronger monsoons in India. The study shows that dust in the air absorbs sunlight west of India, warming the air and strengthening the winds carrying moisture eastward. This results in more monsoon rainfall about a week later in India. The results explain one way that dust can affect the climate, filling in previously unknown details about the Earth system.


Dust in North Africa and West Asia leads to more rain in Indian monsoons.

Credit: Vinoj et al 2014

The study also shows that natural airborne particles can influence rainfall in unexpected ways, with changes in one location rapidly affecting weather thousands of miles away. The researchers analyzed satellite data and performed computer modeling of the region to tease out the role of dust on the Indian monsoon, they report March 16 in Nature Geoscience.

India relies heavily on its summer monsoon rains. "The difference between a monsoon flood year or a dry year is about 10 percent of the average summer rainfall in central India. Variations driven by dust may be strong enough to explain some of that year-to-year variation," said climate scientist Phil Rasch of the Department of Energy's Pacific Northwest National Laboratory.

Rasch, V. Vinoj of the Indian Institute of Technology Bhubaneswar, India, and their coauthors wanted to explore a correlation that appeared in satellite records: higher amounts of small particles called aerosols over North Africa, West Asia, and the Arabian Sea seemed to be connected to stronger rainfall over India around the same time. The team wanted to see if they could verify this and determine how those particles might affect rainfall.

To explore the connection, the team used a computer model called CAM5 and focused on the area. The model included manmade aerosols from pollution, and natural sea salt and dust aerosols. First, the team ran the model and noted a similar connection: more aerosols in the west meant more rainfall in the east. Then they systematically turned off the contribution of each aerosol type and looked to see if the connection remained.

Dust turned out to be the necessary ingredient. The condition that re-created stronger rainfall in India was the rise of dust in North Africa and the Arabian peninsula.

To see how quickly dust worked, they ran short computer simulations with and without dust emissions. Without dust emissions, the atmospheric dust disappeared within a week compared to the simulation with dust emissions and rainfall declined in central India as well. This indicated the effect happens over a short period of time.

But there was one more mystery, how did dust do this to rainfall? To explore possibilities, the team zoomed in on the regional conditions such as air temperature and water transport through the air.

Their likeliest possibility focused on the fact that dust can absorb sunlight that would normally reach the surface, warming the air instead. This warmer dust-laden air draws moist air from the tropics northward, and strengthens the prevailing winds that move moisture from the Arabian Sea into India, where it falls as rain.

Although dust plays a role in strengthening monsoons, this natural phenomenon does not overpower many other processes that also influence monsoons, said Rasch. Other extremely important factors include the effect of temperature differences between land and ocean, land use changes, global warming, and local effects of pollution aerosols around India that can heat and cool the air, and also affect clouds, he said.

"The strength of monsoons have been declining for the last 50 years," he said. "The dust effect is unlikely to explain the systematic decline, but it may contribute."

###

This work was supported by the Department of Energy Office of Science and PNNL.

Reference: V. Vinoj, Philip J. Rasch, Hailong Wang, Jin-Ho Yoon, Po-Lun Ma, Kiranmayi Landu and Balwinder Singh. Short-term modulation of Indian summer monsoon rainfall by West Asian dust, Nature Geoscience March 16, 2014, doi:10.1038/NGEO2107. (http://dx.doi.org/10.1038/ngeo2107)

The Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. PNNL employs 4,500 staff, has an annual budget of nearly $1 billion, and has been managed for the U.S. Department of Energy by Ohio-based Battelle since the laboratory's inception in 1965. For more, visit the PNNL's News Center, or follow PNNL on Facebook, LinkedIn and Twitter.

Mary Beckman | EurekAlert!
Further information:
http://www.pnnl.gov

Further reports about: Africa Arabian Energy Laboratory Northwest PNNL affect emissions monsoons natural particles rainfall satellite

More articles from Earth Sciences:

nachricht Carbon dioxide fertilization greening Earth, study finds
27.04.2016 | NASA/Goddard Space Flight Center

nachricht Researchers discover fate of melting glacial ice in Greenland
26.04.2016 | University of Georgia

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>