Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The rush to rain

17.03.2014

Dust kicked up in Asia strengthens Indian monsoon within a week

 A new analysis of satellite data reveals a link between dust in North Africa and West Asia and stronger monsoons in India. The study shows that dust in the air absorbs sunlight west of India, warming the air and strengthening the winds carrying moisture eastward. This results in more monsoon rainfall about a week later in India. The results explain one way that dust can affect the climate, filling in previously unknown details about the Earth system.


Dust in North Africa and West Asia leads to more rain in Indian monsoons.

Credit: Vinoj et al 2014

The study also shows that natural airborne particles can influence rainfall in unexpected ways, with changes in one location rapidly affecting weather thousands of miles away. The researchers analyzed satellite data and performed computer modeling of the region to tease out the role of dust on the Indian monsoon, they report March 16 in Nature Geoscience.

India relies heavily on its summer monsoon rains. "The difference between a monsoon flood year or a dry year is about 10 percent of the average summer rainfall in central India. Variations driven by dust may be strong enough to explain some of that year-to-year variation," said climate scientist Phil Rasch of the Department of Energy's Pacific Northwest National Laboratory.

Rasch, V. Vinoj of the Indian Institute of Technology Bhubaneswar, India, and their coauthors wanted to explore a correlation that appeared in satellite records: higher amounts of small particles called aerosols over North Africa, West Asia, and the Arabian Sea seemed to be connected to stronger rainfall over India around the same time. The team wanted to see if they could verify this and determine how those particles might affect rainfall.

To explore the connection, the team used a computer model called CAM5 and focused on the area. The model included manmade aerosols from pollution, and natural sea salt and dust aerosols. First, the team ran the model and noted a similar connection: more aerosols in the west meant more rainfall in the east. Then they systematically turned off the contribution of each aerosol type and looked to see if the connection remained.

Dust turned out to be the necessary ingredient. The condition that re-created stronger rainfall in India was the rise of dust in North Africa and the Arabian peninsula.

To see how quickly dust worked, they ran short computer simulations with and without dust emissions. Without dust emissions, the atmospheric dust disappeared within a week compared to the simulation with dust emissions and rainfall declined in central India as well. This indicated the effect happens over a short period of time.

But there was one more mystery, how did dust do this to rainfall? To explore possibilities, the team zoomed in on the regional conditions such as air temperature and water transport through the air.

Their likeliest possibility focused on the fact that dust can absorb sunlight that would normally reach the surface, warming the air instead. This warmer dust-laden air draws moist air from the tropics northward, and strengthens the prevailing winds that move moisture from the Arabian Sea into India, where it falls as rain.

Although dust plays a role in strengthening monsoons, this natural phenomenon does not overpower many other processes that also influence monsoons, said Rasch. Other extremely important factors include the effect of temperature differences between land and ocean, land use changes, global warming, and local effects of pollution aerosols around India that can heat and cool the air, and also affect clouds, he said.

"The strength of monsoons have been declining for the last 50 years," he said. "The dust effect is unlikely to explain the systematic decline, but it may contribute."

###

This work was supported by the Department of Energy Office of Science and PNNL.

Reference: V. Vinoj, Philip J. Rasch, Hailong Wang, Jin-Ho Yoon, Po-Lun Ma, Kiranmayi Landu and Balwinder Singh. Short-term modulation of Indian summer monsoon rainfall by West Asian dust, Nature Geoscience March 16, 2014, doi:10.1038/NGEO2107. (http://dx.doi.org/10.1038/ngeo2107)

The Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. PNNL employs 4,500 staff, has an annual budget of nearly $1 billion, and has been managed for the U.S. Department of Energy by Ohio-based Battelle since the laboratory's inception in 1965. For more, visit the PNNL's News Center, or follow PNNL on Facebook, LinkedIn and Twitter.

Mary Beckman | EurekAlert!
Further information:
http://www.pnnl.gov

Further reports about: Africa Arabian Energy Laboratory Northwest PNNL affect emissions monsoons natural particles rainfall satellite

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>