Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The rush to rain

17.03.2014

Dust kicked up in Asia strengthens Indian monsoon within a week

 A new analysis of satellite data reveals a link between dust in North Africa and West Asia and stronger monsoons in India. The study shows that dust in the air absorbs sunlight west of India, warming the air and strengthening the winds carrying moisture eastward. This results in more monsoon rainfall about a week later in India. The results explain one way that dust can affect the climate, filling in previously unknown details about the Earth system.


Dust in North Africa and West Asia leads to more rain in Indian monsoons.

Credit: Vinoj et al 2014

The study also shows that natural airborne particles can influence rainfall in unexpected ways, with changes in one location rapidly affecting weather thousands of miles away. The researchers analyzed satellite data and performed computer modeling of the region to tease out the role of dust on the Indian monsoon, they report March 16 in Nature Geoscience.

India relies heavily on its summer monsoon rains. "The difference between a monsoon flood year or a dry year is about 10 percent of the average summer rainfall in central India. Variations driven by dust may be strong enough to explain some of that year-to-year variation," said climate scientist Phil Rasch of the Department of Energy's Pacific Northwest National Laboratory.

Rasch, V. Vinoj of the Indian Institute of Technology Bhubaneswar, India, and their coauthors wanted to explore a correlation that appeared in satellite records: higher amounts of small particles called aerosols over North Africa, West Asia, and the Arabian Sea seemed to be connected to stronger rainfall over India around the same time. The team wanted to see if they could verify this and determine how those particles might affect rainfall.

To explore the connection, the team used a computer model called CAM5 and focused on the area. The model included manmade aerosols from pollution, and natural sea salt and dust aerosols. First, the team ran the model and noted a similar connection: more aerosols in the west meant more rainfall in the east. Then they systematically turned off the contribution of each aerosol type and looked to see if the connection remained.

Dust turned out to be the necessary ingredient. The condition that re-created stronger rainfall in India was the rise of dust in North Africa and the Arabian peninsula.

To see how quickly dust worked, they ran short computer simulations with and without dust emissions. Without dust emissions, the atmospheric dust disappeared within a week compared to the simulation with dust emissions and rainfall declined in central India as well. This indicated the effect happens over a short period of time.

But there was one more mystery, how did dust do this to rainfall? To explore possibilities, the team zoomed in on the regional conditions such as air temperature and water transport through the air.

Their likeliest possibility focused on the fact that dust can absorb sunlight that would normally reach the surface, warming the air instead. This warmer dust-laden air draws moist air from the tropics northward, and strengthens the prevailing winds that move moisture from the Arabian Sea into India, where it falls as rain.

Although dust plays a role in strengthening monsoons, this natural phenomenon does not overpower many other processes that also influence monsoons, said Rasch. Other extremely important factors include the effect of temperature differences between land and ocean, land use changes, global warming, and local effects of pollution aerosols around India that can heat and cool the air, and also affect clouds, he said.

"The strength of monsoons have been declining for the last 50 years," he said. "The dust effect is unlikely to explain the systematic decline, but it may contribute."

###

This work was supported by the Department of Energy Office of Science and PNNL.

Reference: V. Vinoj, Philip J. Rasch, Hailong Wang, Jin-Ho Yoon, Po-Lun Ma, Kiranmayi Landu and Balwinder Singh. Short-term modulation of Indian summer monsoon rainfall by West Asian dust, Nature Geoscience March 16, 2014, doi:10.1038/NGEO2107. (http://dx.doi.org/10.1038/ngeo2107)

The Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. PNNL employs 4,500 staff, has an annual budget of nearly $1 billion, and has been managed for the U.S. Department of Energy by Ohio-based Battelle since the laboratory's inception in 1965. For more, visit the PNNL's News Center, or follow PNNL on Facebook, LinkedIn and Twitter.

Mary Beckman | EurekAlert!
Further information:
http://www.pnnl.gov

Further reports about: Africa Arabian Energy Laboratory Northwest PNNL affect emissions monsoons natural particles rainfall satellite

More articles from Earth Sciences:

nachricht Researchers find higher than expected carbon emissions from inland waterways
25.05.2016 | Washington State University

nachricht Rutgers scientists help create world's largest coral gene database
24.05.2016 | Rutgers University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>