Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The rate at which groundwater reservoirs are being depleted is increasing


In what parts of the world and to what degree have groundwater reservoirs been depleted over the past 50 years?

The Frankfurt hydrologist Prof. Petra Döll has been researching this using the global water model WaterGAP. Her conclusion: The rate at which groundwater reservoirs are being depleted is increasing, but that the rate is not as high as previously estimated.

In what parts of the world and to what degree have groundwater reservoirs been depleted over the past 50 years? The Frankfurt hydrologist Prof. Petra Döll has been researching this using the global water model WaterGAP. She has arrived at the most reliable estimate to date by taking into consideration processes which are important in dry regions of the world.

The values calculated were compared with monitoring data from many different wells and data from the GRACE satellites. These satellites measure changes in the Earth's gravity field. Döll has come to the conclusion that the rate at which groundwater reservoirs are being depleted is increasing, but that the rate is not as high as previously estimated.

90 percent of water consumption is due to irrigation for farming purposes. Only the comparatively small remainder is used for potable water and industrial production. As an example, 40 percent of the cereals produced around the world is irrigated. However, in many cases this results in increased scarcity of water resources and puts a burden on ecosystems. In dry regions, the amount taken from groundwater reservoirs can easily exceed the amount being replenished, so that the groundwater reservoir is overused and depleted.

"By comparing the modelled and measured values of groundwater depletion, we were able for the first time to show on a global scale that farmers irrigate more sparingly in regions where groundwater reservoirs are being depleted. They only use about 70 percent of the optimal irrigation amounts", explains Petra Döll from the Institute of Physical Geography at the Goethe University.

The rate at which the Earth's groundwater reservoirs are being depleted is constantly increasing. Annual groundwater depletion during the first decade of this century was twice as high as it was between 1960 and 2000. India, the USA, Iran, Saudi Arabia and China are the countries with the highest rates of groundwater depletion.

About 15 percent of global groundwater consumption is not sustainable, meaning that it comes from non-renewable groundwater resources. On the Arabian Peninsula, in Libya, Egypt, Mali, Mozambique and Mongolia, over 30 percent of groundwater consumption is from non-renewable groundwater.

The new estimate of global groundwater depletion is 113,000 million cubic meters per year for the period from 2000 to 2009, which is lower than previous, widely varying estimates. This can be considered to be the most reliable value to date, since it is based on improved groundwater consumption data which takes the likely deficit irrigation into account, and since the model results correlate well with independent comparative data.

The increased use of groundwater for irrigation also results in a rise in sea levels: According to Döll's calculations, sea level rise due to groundwater depletion was 0.31 millimetres per year during the period from 2000 to 2009. This corresponds to roughly one tenth of the total sea level rise.

The work was funded by the Deutsche Forschungsgemeinschaft through the priority program "Mass transport and Mass distribution in the System Earth".

Publication Döll, P., Müller Schmied, H., Schuh, C., Portmann, F.T., Eicker, A., (2014): Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modelling with information from well observations and GRACE satellites. Water Resour. Res. 50, doi: 10.1002/2014WR015595.
Online publication:

Information Prof. Petra Döll, Institute of Physical Geography, Riedberg Campus, Phone: (069)798-40219:

The Goethe University is an institution with particularly strong research capabilities based in the European financial metropolis of Frankfurt. It celebrates its 100th year of existence in 2014. The university was founded in 1914 through private means from liberally-orientated citizens of Frankfurt and has devoted itself to fulfilling its motto "Science for the Society" in its research and teaching activity right up to the present day. Many of the founding donors were of Jewish origin. During the last 100 years, the pioneering services offered by the Goethe University have impacted the fields of social, societal and economic sciences, chemistry, quantum physics, neurological research and labour law. On January 1st, 2008, it achieved an exceptional degree of independence as it returned to its historical roots as a privately funded university. Today it is one of the ten universities that are most successful in obtaining external research funding and one of the three largest universities in Germany with centres of excellence in medicine, life sciences and humanities.

Publisher: The president of the Goethe University Frankfurt am Main. Editorial department: Dr. Anne Hardy, Public Relations Officer for Scientific Communication. Abteilung Marketing und Kommunikation, Grüneburgplatz 1, 60629 Frankfurt am Main, Phone: (069) 798-12498.

Weitere Informationen:

Dr. Anke Sauter | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Rapid plankton growth in ocean seen as sign of carbon dioxide loading
27.11.2015 | Johns Hopkins University

nachricht Revealing glacier flow with animated satellite images
26.11.2015 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>