Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The hidden history of rain: plant waxes reveal rainfall changes during the last 24,000 years

17.06.2014

Across the edges of the Indian Ocean, the amount of rainfall differs greatly

If it rains particularly hard in the Sumatran rain forest, the already arid region of East Africa is onset with drought. Researchers from the Biodiversity and Climate Research Centre (BiK-F), the California Institute of Technology, the Univerity of Southern California and the University of Bremen found that this cyclic, bipolar climate phenomenon has likely been around for 10,000 years. The pilot study, published today in, "Proceedings of the National Academy of Sciences," sheds light on the climate system of a region whose rainfall patterns have a major impact on global climate.


The marine sediment core was retrieved at 481 m water depth.

Copyright: E. Niedermeyer

The tropics play a critical role in the global climate system, in part because they are the origin of weather extremes such as El Niño and the monsoon. One of the most important regions, in this case, is the Indo-Pacific region in Southeast Asia. It is the largest source of atmospheric water vapor as well as receiving the greatest amount of rainfall on Earth. A team of researchers has now explored precipitation changes off the coast of western Indonesia during the last 24,000 years with the aim to better understand patterns and dynamics of local precipitation.

Climate phenomenon in the Indian Ocean has been around for 10,000 years
According to the researchers, it is likely that the so called, "Indian Ocean Di-pole," has been a recurrent feature of the regional climate system for the past 10,000 years. At present, this seasonal event occurs about every five to seven years. Among other things, it includes anomalous precipitation patterns in the eastern and western edges of the Indian Ocean, which are linked. The precipitation dipole is such that higher rainfall on the west coast of Indonesia corresponds to less rainfall in East Africa, and vice versa. The new study, which looked at 30-year averages of rainfall amounts, revealed that a similar pattern has persisted for the past 10,000 years. "Such insights into the past may help to separate natural from ‘man-made’ oscillations of rainfall which is particularly important in view of ongoing climate change," says the lead author of the study, Dr. Eva Niedermeyer, LOEWE Biodiversity and Climate Research Centre (BiK-F).

Proof of past climatic conditions found in terrestrial plant waxes
Niedermeyer and her colleagues worked on a marine sediment core which was collected off the coast of western Sumatra at a depth of 481 meters. They studied terrestrial plant waxes, a layer on the plant’s surface protecting against dehydration and microbial attack, which are preserved in the sediment. It is possible to reconstruct past precipitation changes by measuring the stable hydrogen isotopic composition in terrestrial plant waxes because rainfall is the primary source of hydrogen stored in plant material. The method thus extends the comparatively short temporal coverage of directly measured climate data to times long past.

In the long term, changes in sea level were of minor importance to rainfall patterns in north western Sumatra
With the end of the last Ice Age came rising temperatures and melting polar ice sheets, which were accompanied by an increase in rainfall around Indonesia and many other regions of the world.. In contrast, the plant wax record from the study site in north western Sumatra reveals similarly high amounts of rainfall during both the Last Glacial Maximum and the Holocene. The amount of rainfall during the past 24,000 years seems to be linked to the level of exposure of the Sunda Shelf and in particular to the specific topography of the western edge of the region, rather than to changes in deglacial climate boundary conditions alone. “This is quite unexpected. Based on previous studies it was assumed that the entire region was much drier during the Last Glacial Maximum compared to present conditions,“ Niedermeyer concludes.

Pilot study focusing on a region vulnerable to climate change
Although the study highlights that long term changes in rainfall intensity are not always ’man-made,’ it does not necessarily mean that today's weather anomalies across the Indian Ocean rim countries and, in particular, their frequency, are not subject to human influence. The Indian Ocean region is home to a growing population, and possible adverse future climate conditions might spur political conflicts. The pilot study is a step towards detailed investigations that may be carried out in the future in this area. An enhanced understanding of the climatic phenomena, and their underlying mechanisms in this area, helps to increase the resolution of climate projections.
For more information please contact:

Dr. Eva Niedermeyer
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Tel. +49 (0)69 7542 1882
eva.niedermeyer@senckenberg.de

or
Sabine Wendler
LOEWE Biodiversity and Climate Research Centre (BiK-F),
Press officer
Tel. +49 (0)69 7542 1838
Sabine.wendler@senckenberg.de

 
LOEWE Biodiversität und Klima Forschungszentrum, Frankfurt am Main

With the objective of analyzing the complex interactions between biodiversity and climate, through a wide range of methods, the Biodiversität und Klima Forschungszentrum [Biodiversity and Climate Research Centre] (BiK‐F) has been funded since 2008 within the context of the Landes‐ Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz (LOEWE) of the Land of Hessen. The Senckenberg Gesellschaft für Naturforschung and Goethe University in Frankfurt, as well as other directly involved partners, co‐operate closely with regional, national and international institutions in the fields of science, resource and environmental management, in order to develop projections for the future of scientific recommendations for sustainable action.

For further details, please visit www.bik‐f.de

Sabine Wendler | Senckenberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>