Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The hidden history of rain: plant waxes reveal rainfall changes during the last 24,000 years

17.06.2014

Across the edges of the Indian Ocean, the amount of rainfall differs greatly

If it rains particularly hard in the Sumatran rain forest, the already arid region of East Africa is onset with drought. Researchers from the Biodiversity and Climate Research Centre (BiK-F), the California Institute of Technology, the Univerity of Southern California and the University of Bremen found that this cyclic, bipolar climate phenomenon has likely been around for 10,000 years. The pilot study, published today in, "Proceedings of the National Academy of Sciences," sheds light on the climate system of a region whose rainfall patterns have a major impact on global climate.


The marine sediment core was retrieved at 481 m water depth.

Copyright: E. Niedermeyer

The tropics play a critical role in the global climate system, in part because they are the origin of weather extremes such as El Niño and the monsoon. One of the most important regions, in this case, is the Indo-Pacific region in Southeast Asia. It is the largest source of atmospheric water vapor as well as receiving the greatest amount of rainfall on Earth. A team of researchers has now explored precipitation changes off the coast of western Indonesia during the last 24,000 years with the aim to better understand patterns and dynamics of local precipitation.

Climate phenomenon in the Indian Ocean has been around for 10,000 years
According to the researchers, it is likely that the so called, "Indian Ocean Di-pole," has been a recurrent feature of the regional climate system for the past 10,000 years. At present, this seasonal event occurs about every five to seven years. Among other things, it includes anomalous precipitation patterns in the eastern and western edges of the Indian Ocean, which are linked. The precipitation dipole is such that higher rainfall on the west coast of Indonesia corresponds to less rainfall in East Africa, and vice versa. The new study, which looked at 30-year averages of rainfall amounts, revealed that a similar pattern has persisted for the past 10,000 years. "Such insights into the past may help to separate natural from ‘man-made’ oscillations of rainfall which is particularly important in view of ongoing climate change," says the lead author of the study, Dr. Eva Niedermeyer, LOEWE Biodiversity and Climate Research Centre (BiK-F).

Proof of past climatic conditions found in terrestrial plant waxes
Niedermeyer and her colleagues worked on a marine sediment core which was collected off the coast of western Sumatra at a depth of 481 meters. They studied terrestrial plant waxes, a layer on the plant’s surface protecting against dehydration and microbial attack, which are preserved in the sediment. It is possible to reconstruct past precipitation changes by measuring the stable hydrogen isotopic composition in terrestrial plant waxes because rainfall is the primary source of hydrogen stored in plant material. The method thus extends the comparatively short temporal coverage of directly measured climate data to times long past.

In the long term, changes in sea level were of minor importance to rainfall patterns in north western Sumatra
With the end of the last Ice Age came rising temperatures and melting polar ice sheets, which were accompanied by an increase in rainfall around Indonesia and many other regions of the world.. In contrast, the plant wax record from the study site in north western Sumatra reveals similarly high amounts of rainfall during both the Last Glacial Maximum and the Holocene. The amount of rainfall during the past 24,000 years seems to be linked to the level of exposure of the Sunda Shelf and in particular to the specific topography of the western edge of the region, rather than to changes in deglacial climate boundary conditions alone. “This is quite unexpected. Based on previous studies it was assumed that the entire region was much drier during the Last Glacial Maximum compared to present conditions,“ Niedermeyer concludes.

Pilot study focusing on a region vulnerable to climate change
Although the study highlights that long term changes in rainfall intensity are not always ’man-made,’ it does not necessarily mean that today's weather anomalies across the Indian Ocean rim countries and, in particular, their frequency, are not subject to human influence. The Indian Ocean region is home to a growing population, and possible adverse future climate conditions might spur political conflicts. The pilot study is a step towards detailed investigations that may be carried out in the future in this area. An enhanced understanding of the climatic phenomena, and their underlying mechanisms in this area, helps to increase the resolution of climate projections.
For more information please contact:

Dr. Eva Niedermeyer
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Tel. +49 (0)69 7542 1882
eva.niedermeyer@senckenberg.de

or
Sabine Wendler
LOEWE Biodiversity and Climate Research Centre (BiK-F),
Press officer
Tel. +49 (0)69 7542 1838
Sabine.wendler@senckenberg.de

 
LOEWE Biodiversität und Klima Forschungszentrum, Frankfurt am Main

With the objective of analyzing the complex interactions between biodiversity and climate, through a wide range of methods, the Biodiversität und Klima Forschungszentrum [Biodiversity and Climate Research Centre] (BiK‐F) has been funded since 2008 within the context of the Landes‐ Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz (LOEWE) of the Land of Hessen. The Senckenberg Gesellschaft für Naturforschung and Goethe University in Frankfurt, as well as other directly involved partners, co‐operate closely with regional, national and international institutions in the fields of science, resource and environmental management, in order to develop projections for the future of scientific recommendations for sustainable action.

For further details, please visit www.bik‐f.de

Sabine Wendler | Senckenberg

More articles from Earth Sciences:

nachricht Errant Galileo satellites will be used for research on Einstein’s general theory of relativity
31.08.2015 | Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM)

nachricht Time travel into the past of marginal seas: IOW expedition explores Canadian coastal waters
31.08.2015 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Production research by Fraunhofer IAO honored with three awards at the ICPR 2015

31.08.2015 | Awards Funding

Single-Crystal Phosphors Suitable for Ultra-Bright, High-Power White Light Sources

31.08.2015 | Materials Sciences

Manchester Team Reveal New, Stable 2D Materials

31.08.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>