Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Greenland Ice Sheet: Now in HD

22.12.2014

New software yields highest-resolution large-scale maps of polar ice

The Greenland Ice Sheet is ready for its close-up.


Kuparuk Watershed, Alaska

Braided Streams & Geology

The highest-resolution satellite images ever taken of that region are making their debut. And while each individual pixel represents only one moment in time, taken together they show the ice sheet as a kind of living body—flowing, crumbling and melting out to sea.

The Ohio State University has partnered with the Polar Geospatial Center at the University of Minnesota to turn images captured by DigitalGlobe’s Worldview-1 and 2 satellites into publicly available elevation maps that researchers can use to track the ice.

Ian Howat, associate professor of earth sciences at Ohio State, presented the project’s first data release in a poster session at the American Geophysical Union (AGU) meeting on Dec. 18, 2014.*

He called researchers’ access to DigitalGlobe’s imagery “one of the biggest breakthroughs for earth science satellite capabilities in decades,” adding that “it’s only been a few years since we’ve gotten access to really high-resolution imagery from government agencies, and we’re already discovering new things about the ice sheet.”

The imagery starts out at a resolution of about 0.5 meters. The researchers then turn it into digital elevation maps with a resolution of 2 meters.

With hundreds of terabytes of polar data already collected and additional surface area equivalent to the state of Missouri being collected every day, the researchers are steadily processing it all with new Ohio State software called SETSM (for Surface Extraction from TIN-based Search Minimization). Ohio State research associate Myoung-Jong Noh created the software, which builds 1-gigabyte “tiles” representing regions 7 kilometers on a side and assembles them into mosaics depicting land, sea and ice elevation.

Each tile is extracted from a pair of images acquired of the same region, but about 45 seconds apart. SETSM combines the two displaced images into a coherent whole, as our brain does when it combines images from our two eyes. SETSM uses the Worldview satellites’ sensitivity to a very wide band of the electromagnetic spectrum to show things that our eyes alone couldn’t see, including tiny changes in elevation.

As an example, Howat pointed to the portion of the mosaic showing Jakobshavn Glacier, the fastest-flowing glacier in the Greenland Ice Sheet. Icebergs that have calved off the edge of the glacier are visible floating out to sea—but so are cracks hundreds of kilometers inland from Jakobshavn, on what would otherwise be a flat expanse of ice.

The winding, parallel cracks, which resemble ridges on a fingerprint, are signs that the ice is accelerating, Howat explained. As the ice flows faster and approaches the sea, the surface gets stretched out and cracks open. Over time, the cracks widen. The situation is similar to cars on a highway, he explained: Cars may be bunched up when they first enter the highway from an on-ramp, but they gradually spread apart as they accelerate to highway speeds.

Any research that relies on measuring changes in the Earth’s surface, including studies of volcanoes and coastal erosion, would benefit from elevation data produced by the SETSM software, Howat said. Applications for SETSM outside of earth science include computer vision, astronomy and national security—any job for which very large amounts of terrain are mapped at high resolution.

The mosaics debuting at AGU show southwest Greenland and some of the North Slope of Alaska. So far, the Ohio State team has finished processing images from about one quarter of the Greenland Ice Sheet, representing a tiny portion of the data already stored at Minnesota, and about one year’s worth of work and computing for the research team.

The Greenland Survey, Asiaq, is already using SETSM to protect drinking water resources, where remote sensing specialist Eva Mätzler said it “strengthens the understanding of importance in reliable geographic data for the Greenlandic government and people.” Asiaq project manager Bo Naamansen added that the software “is the best news for several decades when it comes to mapping Greenland and the Arctic.”

Paul Morin, director the Polar Geospatial Center, offered more superlatives: He said that the work done with SETSM is truly revolutionary. “We are no longer limited by remote sensing data when producing elevation data at the poles,” Morin said. “Noh and Howat have shown that we’re really only limited by high-performance computing.”

The Worldview satellite data is collected by commercial imagery vendor DigitalGlobe and licensed for U.S. federal use by the National Geospatial-Intelligence Agency, which in turn provides it to the Polar Geospatial Center at the University of Minnesota. At any given time, a 30-terabyte data subset is being stored and processed at Ohio State via the Ohio Supercomputer Center (OSC) before returning to Minnesota for distribution via a publicly accessible website.

Of the many Ohio State projects that draw upon OSC resources, SETSM is one of the largest. The researchers hope to expand the project to NASA’s Pleiades supercomputer starting in 2015.

NASA funds this research, including the continued development of the SETSM software. The National Science Foundation Division of Polar Programs supports the map distribution through the Polar Geospatial Center. In addition, OSC provided a grant for computing resources.

Contact: Ian Howat, (614) 292-6641; Howat.4@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu
Images are available from the Polar Geospatial Center or from Pam Frost Gorder

Pamela Gorder | newswise
Further information:
http://www.osu.edu

Further reports about: Geospatial Greenland OSC Ohio Polar Sheet cracks ice sheet processing remote sensing satellite tiny

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>