Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Greenland Ice Sheet: Now in HD

22.12.2014

New software yields highest-resolution large-scale maps of polar ice

The Greenland Ice Sheet is ready for its close-up.


Kuparuk Watershed, Alaska

Braided Streams & Geology

The highest-resolution satellite images ever taken of that region are making their debut. And while each individual pixel represents only one moment in time, taken together they show the ice sheet as a kind of living body—flowing, crumbling and melting out to sea.

The Ohio State University has partnered with the Polar Geospatial Center at the University of Minnesota to turn images captured by DigitalGlobe’s Worldview-1 and 2 satellites into publicly available elevation maps that researchers can use to track the ice.

Ian Howat, associate professor of earth sciences at Ohio State, presented the project’s first data release in a poster session at the American Geophysical Union (AGU) meeting on Dec. 18, 2014.*

He called researchers’ access to DigitalGlobe’s imagery “one of the biggest breakthroughs for earth science satellite capabilities in decades,” adding that “it’s only been a few years since we’ve gotten access to really high-resolution imagery from government agencies, and we’re already discovering new things about the ice sheet.”

The imagery starts out at a resolution of about 0.5 meters. The researchers then turn it into digital elevation maps with a resolution of 2 meters.

With hundreds of terabytes of polar data already collected and additional surface area equivalent to the state of Missouri being collected every day, the researchers are steadily processing it all with new Ohio State software called SETSM (for Surface Extraction from TIN-based Search Minimization). Ohio State research associate Myoung-Jong Noh created the software, which builds 1-gigabyte “tiles” representing regions 7 kilometers on a side and assembles them into mosaics depicting land, sea and ice elevation.

Each tile is extracted from a pair of images acquired of the same region, but about 45 seconds apart. SETSM combines the two displaced images into a coherent whole, as our brain does when it combines images from our two eyes. SETSM uses the Worldview satellites’ sensitivity to a very wide band of the electromagnetic spectrum to show things that our eyes alone couldn’t see, including tiny changes in elevation.

As an example, Howat pointed to the portion of the mosaic showing Jakobshavn Glacier, the fastest-flowing glacier in the Greenland Ice Sheet. Icebergs that have calved off the edge of the glacier are visible floating out to sea—but so are cracks hundreds of kilometers inland from Jakobshavn, on what would otherwise be a flat expanse of ice.

The winding, parallel cracks, which resemble ridges on a fingerprint, are signs that the ice is accelerating, Howat explained. As the ice flows faster and approaches the sea, the surface gets stretched out and cracks open. Over time, the cracks widen. The situation is similar to cars on a highway, he explained: Cars may be bunched up when they first enter the highway from an on-ramp, but they gradually spread apart as they accelerate to highway speeds.

Any research that relies on measuring changes in the Earth’s surface, including studies of volcanoes and coastal erosion, would benefit from elevation data produced by the SETSM software, Howat said. Applications for SETSM outside of earth science include computer vision, astronomy and national security—any job for which very large amounts of terrain are mapped at high resolution.

The mosaics debuting at AGU show southwest Greenland and some of the North Slope of Alaska. So far, the Ohio State team has finished processing images from about one quarter of the Greenland Ice Sheet, representing a tiny portion of the data already stored at Minnesota, and about one year’s worth of work and computing for the research team.

The Greenland Survey, Asiaq, is already using SETSM to protect drinking water resources, where remote sensing specialist Eva Mätzler said it “strengthens the understanding of importance in reliable geographic data for the Greenlandic government and people.” Asiaq project manager Bo Naamansen added that the software “is the best news for several decades when it comes to mapping Greenland and the Arctic.”

Paul Morin, director the Polar Geospatial Center, offered more superlatives: He said that the work done with SETSM is truly revolutionary. “We are no longer limited by remote sensing data when producing elevation data at the poles,” Morin said. “Noh and Howat have shown that we’re really only limited by high-performance computing.”

The Worldview satellite data is collected by commercial imagery vendor DigitalGlobe and licensed for U.S. federal use by the National Geospatial-Intelligence Agency, which in turn provides it to the Polar Geospatial Center at the University of Minnesota. At any given time, a 30-terabyte data subset is being stored and processed at Ohio State via the Ohio Supercomputer Center (OSC) before returning to Minnesota for distribution via a publicly accessible website.

Of the many Ohio State projects that draw upon OSC resources, SETSM is one of the largest. The researchers hope to expand the project to NASA’s Pleiades supercomputer starting in 2015.

NASA funds this research, including the continued development of the SETSM software. The National Science Foundation Division of Polar Programs supports the map distribution through the Polar Geospatial Center. In addition, OSC provided a grant for computing resources.

Contact: Ian Howat, (614) 292-6641; Howat.4@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu
Images are available from the Polar Geospatial Center or from Pam Frost Gorder

Pamela Gorder | newswise
Further information:
http://www.osu.edu

Further reports about: Geospatial Greenland OSC Ohio Polar Sheet cracks ice sheet processing remote sensing satellite tiny

More articles from Earth Sciences:

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

nachricht Thawing permafrost releases old greenhouse gas
19.07.2017 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>