Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Greenland Ice Sheet: Now in HD

22.12.2014

New software yields highest-resolution large-scale maps of polar ice

The Greenland Ice Sheet is ready for its close-up.


Kuparuk Watershed, Alaska

Braided Streams & Geology

The highest-resolution satellite images ever taken of that region are making their debut. And while each individual pixel represents only one moment in time, taken together they show the ice sheet as a kind of living body—flowing, crumbling and melting out to sea.

The Ohio State University has partnered with the Polar Geospatial Center at the University of Minnesota to turn images captured by DigitalGlobe’s Worldview-1 and 2 satellites into publicly available elevation maps that researchers can use to track the ice.

Ian Howat, associate professor of earth sciences at Ohio State, presented the project’s first data release in a poster session at the American Geophysical Union (AGU) meeting on Dec. 18, 2014.*

He called researchers’ access to DigitalGlobe’s imagery “one of the biggest breakthroughs for earth science satellite capabilities in decades,” adding that “it’s only been a few years since we’ve gotten access to really high-resolution imagery from government agencies, and we’re already discovering new things about the ice sheet.”

The imagery starts out at a resolution of about 0.5 meters. The researchers then turn it into digital elevation maps with a resolution of 2 meters.

With hundreds of terabytes of polar data already collected and additional surface area equivalent to the state of Missouri being collected every day, the researchers are steadily processing it all with new Ohio State software called SETSM (for Surface Extraction from TIN-based Search Minimization). Ohio State research associate Myoung-Jong Noh created the software, which builds 1-gigabyte “tiles” representing regions 7 kilometers on a side and assembles them into mosaics depicting land, sea and ice elevation.

Each tile is extracted from a pair of images acquired of the same region, but about 45 seconds apart. SETSM combines the two displaced images into a coherent whole, as our brain does when it combines images from our two eyes. SETSM uses the Worldview satellites’ sensitivity to a very wide band of the electromagnetic spectrum to show things that our eyes alone couldn’t see, including tiny changes in elevation.

As an example, Howat pointed to the portion of the mosaic showing Jakobshavn Glacier, the fastest-flowing glacier in the Greenland Ice Sheet. Icebergs that have calved off the edge of the glacier are visible floating out to sea—but so are cracks hundreds of kilometers inland from Jakobshavn, on what would otherwise be a flat expanse of ice.

The winding, parallel cracks, which resemble ridges on a fingerprint, are signs that the ice is accelerating, Howat explained. As the ice flows faster and approaches the sea, the surface gets stretched out and cracks open. Over time, the cracks widen. The situation is similar to cars on a highway, he explained: Cars may be bunched up when they first enter the highway from an on-ramp, but they gradually spread apart as they accelerate to highway speeds.

Any research that relies on measuring changes in the Earth’s surface, including studies of volcanoes and coastal erosion, would benefit from elevation data produced by the SETSM software, Howat said. Applications for SETSM outside of earth science include computer vision, astronomy and national security—any job for which very large amounts of terrain are mapped at high resolution.

The mosaics debuting at AGU show southwest Greenland and some of the North Slope of Alaska. So far, the Ohio State team has finished processing images from about one quarter of the Greenland Ice Sheet, representing a tiny portion of the data already stored at Minnesota, and about one year’s worth of work and computing for the research team.

The Greenland Survey, Asiaq, is already using SETSM to protect drinking water resources, where remote sensing specialist Eva Mätzler said it “strengthens the understanding of importance in reliable geographic data for the Greenlandic government and people.” Asiaq project manager Bo Naamansen added that the software “is the best news for several decades when it comes to mapping Greenland and the Arctic.”

Paul Morin, director the Polar Geospatial Center, offered more superlatives: He said that the work done with SETSM is truly revolutionary. “We are no longer limited by remote sensing data when producing elevation data at the poles,” Morin said. “Noh and Howat have shown that we’re really only limited by high-performance computing.”

The Worldview satellite data is collected by commercial imagery vendor DigitalGlobe and licensed for U.S. federal use by the National Geospatial-Intelligence Agency, which in turn provides it to the Polar Geospatial Center at the University of Minnesota. At any given time, a 30-terabyte data subset is being stored and processed at Ohio State via the Ohio Supercomputer Center (OSC) before returning to Minnesota for distribution via a publicly accessible website.

Of the many Ohio State projects that draw upon OSC resources, SETSM is one of the largest. The researchers hope to expand the project to NASA’s Pleiades supercomputer starting in 2015.

NASA funds this research, including the continued development of the SETSM software. The National Science Foundation Division of Polar Programs supports the map distribution through the Polar Geospatial Center. In addition, OSC provided a grant for computing resources.

Contact: Ian Howat, (614) 292-6641; Howat.4@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu
Images are available from the Polar Geospatial Center or from Pam Frost Gorder

Pamela Gorder | newswise
Further information:
http://www.osu.edu

Further reports about: Geospatial Greenland OSC Ohio Polar Sheet cracks ice sheet processing remote sensing satellite tiny

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>