Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The first globally complete glacier inventory has been created

06.05.2014

Thanks to the efforts of an international group of scientists – one of them is Tobias Bolch from Technische Universität Dresden, Germany - who have mapped all of the world's glaciers, glaciologists can now study with unprecedented accuracy the impacts of a changing climate on glaciers worldwide, and determine their total extent and volume on a glacier-by-glacier basis.

Overall, glaciers cover an area of about 730,000 km2 and have a volume of about 170,000 km3. The scientists found nearly 200,000 of them, but they say that this is the least important result of the mapping exercise as the number constantly changes due to disappearing small and fragmenting larger glaciers. More importantly, each glacier in the new inventory is represented by a computer-readable outline, making precise modelling of glacier–climate interactions much easier.

Zhadang Glacier

This image shows the Zhadang glacier south of lake Nam Tso on the nortern ridge of the Nyainqentanglha mountain range (Tibet, China).

Credit: Photo: Tino Pieczonka (TU Dresden)

"This boost to the infrastructure means that people can now do research that they simply couldn't do properly before", said Graham Cogley of Trent University, one of the coordinators of the new Randolph Glacier Inventory (RGI), which is named after one of the group's meeting places in New Hampshire. The now published article is presenting the RGI and first statistical analysis of the global glacier distribution.

The main stimulus for completing the inventory was the recently-published Fifth Assessment of the Intergovernmental Panel on Climate Change (IPCC). Several studies that relied on earlier versions of the RGI were essential sources for that assessment. "I don't think anyone could have made meaningful progress on projecting glacier changes if the Randolph inventory had not been available", said the University of Colorado's Tad Pfeffer, lead author of the study just published in the Journal of Glaciology. Like several of his co-authors, Pfeffer was also involved in the IPCC assessment.

The total extent of the glaciers in the RGI is about the size of Germany plus Switzerland and Poland. According to several studies, the corresponding total volume is between 35 and 47 cm of sea-level equivalent, i.e. sea level would rise by this amount when all glaciers would melt completely. This is less than most earlier estimates, and less than 1% of the amount stored in the Greenland and Antarctic Ice Sheets. However, barring an unlikely catastrophic ice-sheet collapse the smaller glaciers are judged to be at much more immediate risk under the stress of climatic change as their ice is in general already at the melting point whereas the ice of the ice sheets has to be warmed up to zero degrees first. Glaciers currently contribute about 1/3 to the observed sea level rise, about the same as both ice sheets together (the remaining third is resulting from thermal expansion of ocean water).

"The rapid shrinkage of glaciers during the past 20 years is also well-recognizable in the Alps and other parts of the world" says Frank Paul from the University of Zurich, co-author of the study and also lead author of the first part of the IPCC report that was published in September last year. "Here and in other parts of the world the diminishing glaciers also impact on regional to local scale hydrology, natural hazards, and livelihoods in otherwise dry mountain regions. Accurate knowledge of water reserves and their future evolution is thus key for local authorities for early implementation of mitigation measures" adds his colleague Tobias Bolch who is also researching at Technische Universität Dresden, Germany.

###

The Randolph Glacier Inventory represents collaborative work of more than 70 scientists from 18 countries. The tight schedule of the IPCC's assessment required rapid completion, which was accomplished largely through relying on the unsupported efforts of many volunteers with limited resources, the intensive use of satellite data and the application of geoinformatic techniques. The already existing but incomplete database of GLIMS (Global Land Ice Measurements from Space) was an essential springboard and contributed the baseline dataset for the RGI. Several projects funded by space agencies such as ESA and NASA, the Framework 7 Programme of the European Union, and several Universities gave essential financial support to accomplish the RGI in time. Finally, the support of the International Association of Cryospheric Sciences (IACS) and the International Arctic Science Council (IASC) enabled several meetings of the coordinating group. The contribution of T. Bolch to the RGI was funded by the ESA project Glaciers_cci, the EU FP7 project ice2sea, and the German Research Foundation (DFG).

Publication:

Pfeffer, W.T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner, A. S., Hagen, J.-O., Hock, R., Kaser, G., Kienholz, C., Miles, E. S., Moholdt, G., Mölg, N., Paul, F., Radic, V., Rastner, P., Raup, B. H., Rich, J., Sharp, M. J. and the Randolph Consortium: The Randolph Glacier Inventory (2014): a globally complete inventory of glaciers. Journal of Glaciology 60(221), doi: 10.3189/2014JoG13J176. http://www.igsoc.org/journal/60/221/j13J176.pdf

Information for Journalists:

Tobias Bolch, Institute for Cartographie
Technische Universität Dresden
E-Mail: tobias.bolch@tu-dresden.de
Tel. (+41) 44 6355236 or 0351 463 34809 (secretary)

Tobias Bolch | Eurek Alert!
Further information:
http://www.tu-dresden.de

Further reports about: Antarctic ice sheets Assessment Climate change ESA Glacier Glaciology Greenland IPCC Inventory existing

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
17.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>