Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The ancient rotation of the Iberian Peninsula left a magnetic trace

07.03.2016

The volcanic rock found in the south of Leon (Spain) experienced a rotation of almost 60º 300 million years ago, an example of what could have occurred across the entire Iberian Peninsula when, in that moment, it was still being formed. This fact is demonstrated by the magnetic signals of its minerals, currently being analysed by researchers from the universities of Salamanca and Utrecht (The Netherlands). This discovery improves our understanding of a now-disappeared mountain range that stood over what is now north-western Spain, France, and the southern United Kingdom.

The bathers that gather every summer on the banks of the rivers of the mountain ranges of La Cabrera and El Teleno in Leon (Spain) have little reason to suspect that the rocks that they can see near the water are of volcanic origin, over 460 million years old, when an emerging Iberian Peninsula was still on the coast of the continent of Gondwana, on the shore of the Rheic ocean.


This is an aerial photograph of the Truchillas river (Truchas, Leon), and detail of its volcanic rock.

Credit: J. Fernandez Lozano et al.

Around 350 million years ago, that ancient ocean closed during the formation of the Pangea supercontinent, and the sediments deposited in it became a large mountain range that later acquired a curved shape, becoming part of what is now the Iberian Peninsula around 300 million years ago.

Now scientists at University of Salamanca have collected, in the Leonese towns located between Truchas and Ponferrada, 320 samples of volcanic rock and limestone, a record of that turbulent, volcanic period of our planet's history.

... more about:
»Cantabrian »SINC »collision »magnetic field »volcanic

After having analysed the samples in one of the most important Palaeomagnetism laboratories in the world, located at Utrecht University (The Netherlands), they have been able to reconstruct the history of these ancient rocks based on the magnetic signal of their mineral content. The results have been published in the journal 'Tectonophysics'.

"These rocks were deposited on the ocean floor 440 million years ago near the south pole, and its components were oriented in the direction of the Earth's magnetic field at the time (N-S)," explains to SINC Javier Fernandez Lozano, a geologist at the University of Salamanca and co-author of the research.

About 120 million years later, the collision of two continents occurred, between what is now the North and South of Europe. The result of this collision was what is known as the Variscan orogeny, the raising of a mountain range along the North-South axis, which left the rocks with a secondary magnetic signal, adapted to the new magnetic field of the Earth.

The changes in the direction of that magnetic field were preserved in their minerals, and indicate that shortly after that process, the rocks of these mountains experienced a rotation of almost 60º, until they ended up in with their current orientation," notes Fernandez Lozano.

He points out that this magnetic signal can be associated with large-scale processes of mountain formation, and how these ranges can be curved until they create structures known as oroclines: "With a rock sample, we can analyse a process that has occurred on the tectonic plate level; and, specifically, offers new data that allows us to discover how this orogeny or large Variscan range and its curvature occurred. This information was preserved in the rocks of the British Isles, France, and North-West Spain, along more than 3,000 kilometres.

This study forms part of a long-debated geological problem: the Cantabrian orocline, an issue that a few years ago brought together specialists at an international congress held in Salamanca. An orocline is the curvature of a range or chain of mountains that was originally linear, and the Cantabrian orocline is recognizable 300 million years later in the geography of the Iberian Peninsula and surrounding areas.

Concretely, one can observe the arc formed by the Cantabrian range until it disappears into the continental shelf, and the curvature that continues onward towards the Iberian Range. Fernandez Lozano notes that the new research "goes beyond previous efforts, primarily focused on Asturias, in order to understand this orocline, and now we can find its traces further to the south, on the border between Leon and Zamora."

"Thanks to studies like this one, we can continue to provide information on the causes and processes that gave birth to curved mountain ranges after the collision between two continents," concludes the geologist.

###

References:

Fernandez-Lozano, J., Pastor-Galan, D., Gutierrez-Alonso, G. y Franco, P. "New kinematic constraints on the Cantabrian orocline: A paleomagnetic study from the Peñalba and Truchas synclines, NW Spain". Tectonophysics , 20 February 2016 (on line). Doi: doi:10.1016/j.tecto.2016.02.019

SINC | EurekAlert!

Further reports about: Cantabrian SINC collision magnetic field volcanic

More articles from Earth Sciences:

nachricht The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht FotoQuest GO: Citizen science campaign targets land-use change in Austria
19.09.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>