Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The ancient rotation of the Iberian Peninsula left a magnetic trace

07.03.2016

The volcanic rock found in the south of Leon (Spain) experienced a rotation of almost 60º 300 million years ago, an example of what could have occurred across the entire Iberian Peninsula when, in that moment, it was still being formed. This fact is demonstrated by the magnetic signals of its minerals, currently being analysed by researchers from the universities of Salamanca and Utrecht (The Netherlands). This discovery improves our understanding of a now-disappeared mountain range that stood over what is now north-western Spain, France, and the southern United Kingdom.

The bathers that gather every summer on the banks of the rivers of the mountain ranges of La Cabrera and El Teleno in Leon (Spain) have little reason to suspect that the rocks that they can see near the water are of volcanic origin, over 460 million years old, when an emerging Iberian Peninsula was still on the coast of the continent of Gondwana, on the shore of the Rheic ocean.


This is an aerial photograph of the Truchillas river (Truchas, Leon), and detail of its volcanic rock.

Credit: J. Fernandez Lozano et al.

Around 350 million years ago, that ancient ocean closed during the formation of the Pangea supercontinent, and the sediments deposited in it became a large mountain range that later acquired a curved shape, becoming part of what is now the Iberian Peninsula around 300 million years ago.

Now scientists at University of Salamanca have collected, in the Leonese towns located between Truchas and Ponferrada, 320 samples of volcanic rock and limestone, a record of that turbulent, volcanic period of our planet's history.

... more about:
»Cantabrian »SINC »collision »magnetic field »volcanic

After having analysed the samples in one of the most important Palaeomagnetism laboratories in the world, located at Utrecht University (The Netherlands), they have been able to reconstruct the history of these ancient rocks based on the magnetic signal of their mineral content. The results have been published in the journal 'Tectonophysics'.

"These rocks were deposited on the ocean floor 440 million years ago near the south pole, and its components were oriented in the direction of the Earth's magnetic field at the time (N-S)," explains to SINC Javier Fernandez Lozano, a geologist at the University of Salamanca and co-author of the research.

About 120 million years later, the collision of two continents occurred, between what is now the North and South of Europe. The result of this collision was what is known as the Variscan orogeny, the raising of a mountain range along the North-South axis, which left the rocks with a secondary magnetic signal, adapted to the new magnetic field of the Earth.

The changes in the direction of that magnetic field were preserved in their minerals, and indicate that shortly after that process, the rocks of these mountains experienced a rotation of almost 60º, until they ended up in with their current orientation," notes Fernandez Lozano.

He points out that this magnetic signal can be associated with large-scale processes of mountain formation, and how these ranges can be curved until they create structures known as oroclines: "With a rock sample, we can analyse a process that has occurred on the tectonic plate level; and, specifically, offers new data that allows us to discover how this orogeny or large Variscan range and its curvature occurred. This information was preserved in the rocks of the British Isles, France, and North-West Spain, along more than 3,000 kilometres.

This study forms part of a long-debated geological problem: the Cantabrian orocline, an issue that a few years ago brought together specialists at an international congress held in Salamanca. An orocline is the curvature of a range or chain of mountains that was originally linear, and the Cantabrian orocline is recognizable 300 million years later in the geography of the Iberian Peninsula and surrounding areas.

Concretely, one can observe the arc formed by the Cantabrian range until it disappears into the continental shelf, and the curvature that continues onward towards the Iberian Range. Fernandez Lozano notes that the new research "goes beyond previous efforts, primarily focused on Asturias, in order to understand this orocline, and now we can find its traces further to the south, on the border between Leon and Zamora."

"Thanks to studies like this one, we can continue to provide information on the causes and processes that gave birth to curved mountain ranges after the collision between two continents," concludes the geologist.

###

References:

Fernandez-Lozano, J., Pastor-Galan, D., Gutierrez-Alonso, G. y Franco, P. "New kinematic constraints on the Cantabrian orocline: A paleomagnetic study from the Peñalba and Truchas synclines, NW Spain". Tectonophysics , 20 February 2016 (on line). Doi: doi:10.1016/j.tecto.2016.02.019

SINC | EurekAlert!

Further reports about: Cantabrian SINC collision magnetic field volcanic

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>