Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How much of thallium pollutants will be released to environment by utilizing minerals?

01.10.2013
A recent research has explored the environmental exposure and flux of thallium to the environment; and it provides the foundations for theoretical calculation to control Tl pollution by utilizing of Tl-rich pyrite minerals.

This paper, "Environmental Exposure and Flux of Thallium by Industrial Activities Utilizing Thallium-Bearing Pyrite", written by professor CHEN Yong-Heng et al. from Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, Guangzhou University, is published in Science China: Earth Sciences (No.9, 2013) .

Thallium is a rare but widely dispersed element with high toxicity .Severe thallium intoxication could lead to neurological disease and death. Thallium has low background levels in environment, with concentrations of about 0.01~0.05 ìg/L in freshwater and marine respectively. It usually presents in some specific sulfide and silicate minerals. Due to the mining activities of Tl-rich sulfide minerals, Tl pollution is increasingly severe in China; and the Tl level in some industrial waste water even exceeded 10 mg/L.

This paper firstly combined the sequential extraction and ICP-MS to investigate the geo-chemical speciation and partitioning transformation of thallium during the production process, analyzed the environmental exposure, assessed accurately of its environmental flux.

Result showed that 40% of Tl in the pyrite minerals was active, among which 25% of Tl was washed into water during gas cleaning process, and 15% of the active Tl retained in the slags that could be possibly transferred to the soil or water with the slag deposal or being reused during roasting of ores. Meanwhile, the other portion (60% of Tl) remained relatively stable in the residual phase. Given the above information, with an industrial site bearing ore (20 mg Tl/kg) production of three million tons annually, 24 tons of Tl would enter into the environment, including 15 tons into the aquatic system, which brings serious Tl pollution into the environment. Therefore, it is urgent to control Tl pollution from the headstream.

This study was supported by United Sponsorship of the National Natural Science Foundation of China and Guangzhou Provincial Government (Grant No.U0633001), the National Science Foundation of China (Grant No.20477007).

Corresponding author:

CHEN Yongheng
chenyheng@eyou.com
See the article:
CHEN Y H, Wang C L, LIU J, Wang J, QI J Y, Wu Y J, Environmental exposure and flux of thallium by industrial activities utilizing thallium-bearing pyrite, SCIENCE CHINA Earth Sciences, 2013, 56(9): 1502-1509.

http://earth.scichina.com:8080/sciDe/EN/abstract/abstract510944.shtml

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 50 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

YAN Bei | EurekAlert!
Further information:
http://www.scichina.org

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>