Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas surprise: When trees, shrubs replace grasses, water flows can increase

05.03.2010
Contrary to prevailing wisdom, the takeover of rangelands by trees and shrubs can increase flows of streams and recharging of groundwater, a new study shows. The soon-to-be published analysis of many decades of historical records for four central Texas river basins challenges widespread perceptions that woody plants have the opposite effects on streams and aquifers.

The researchers found evidence that, from around 1890 to 1960, overgrazing and resultant soil degradation, not encroachment by woody plants, were the main culprits behind reductions in streamflows and recharging of groundwater in the semiarid central region known as the Edwards Plateau. The region is the primary water source for the Edwards Aquifer, which supplies the city of San Antonio and numerous smaller municipalities.

Large numbers of cattle, sheep, and goats that continuously grazed the area's rangelands led to widespread soil degradation, partly hindering the amount of water recharging springs and groundwater, says hydrologist Bradford Wilcox of Texas A&M University and Texas AgriLife Research, in College Station, Texas.

He and Yun Huang, a former graduate student at Texas A&M, will publish their results in an upcoming issue of Geophysical Research Letters, a journal of the American Geophysical Union (AGU).

From 1880 to 1900, there were more animals on the land than it could support, Wilcox says. For a short period of time near the turn of the last century, stocking rates were 10 times greater than current levels. Since the late 1900s, however, as fewer cattle and other livestock were used on the land for agricultural production, the region has gone through revitalization.

"As a result, these landscapes are recovering, but they've also converted to woody plants," Wilcox notes. "We're also seeing large-scale increases in the amount of spring flows. This is opposite of what everybody is presuming -[which is that] the trees are there sucking up all of this water. The trees are actually allowing the water to infiltrate."

In fact, spring flows are twice as high as they were prior to 1950, he adds.

"This area was basically converted from grassland to shrubland after many years of heavy livestock grazing. What people have forgotten is that in the time period between healthy grasslands and the current shrublands, there was an extended period when the land was quite degraded. Subsequent to 1960, livestock numbers have declined and the landscape has recovered although there are now more cedar than in the past," Wilcox explains.

In the new study, he and Huang, who is now with LBG Guyton, in Austin, assess the hydrological changes that have taken place in the region as patterns of land use and vegetation changed. To do so, the researchers analyzed annual measurements dating back to 1925, or earlier, for the Nueces, Frio, Guadulupe, and Llano rivers. The measurements provide an annual record of 'baseflow,' or flow derived from groundwater only (i.e. springs) and of 'stormflow' or flow resulting from rainfall, for those rivers.

The scientists report that the total flow in the three of the four rivers has gone up in recent decades, "largely because contributions in the form of baseflow have increased." The baseflow of the fourth river also increased, although its total flow did not. Yet, rainfall in the region hasn't changed significantly.

Although the prevailing wisdom has been that proliferation of woody plants stifles infiltration of water back into aquifers, the new results suggest otherwise.

Moreover, the results have implications beyond the Edwards Plateau, Wilcox and Huang maintain, applying in general to "semiarid and subhumid rangelands in which springs and intermittent or perennial streams are found." For such regions, the transition to woody plants appears to be good news for regional water resources.

Images:
Photos of rangeland on the Edwards Plateau in degraded and recovering states, plus a map of the four studied river basins (and captions) are available for download with AGU's posted press release at:

http://www.agu.org/news/press/pr_archives/2010/2010-06.shtml

Title:
"Woody Plant Encroachment Paradox: Rivers Rebound as Degraded Grasslands Convert to Woodlands"
Authors:
Bradford P. Wilcox and Yun Huang, Ecosystem Science and Management, Texas A&M University, College Station, Texas, USA.
Contact information for authors:
Brad Wilcox, Professor, Department of Ecosystem Science and Management, 979-458-1899, bwilcox@tamu.edu
AGU Contact:
Peter Weiss
+1 (202) 777 7507
pweiss@agu.org
Texas A&M Contact:
Blair Fannin
+1 (979) 845-2259
b-fannin@tamu.edu

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>