Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas surprise: When trees, shrubs replace grasses, water flows can increase

05.03.2010
Contrary to prevailing wisdom, the takeover of rangelands by trees and shrubs can increase flows of streams and recharging of groundwater, a new study shows. The soon-to-be published analysis of many decades of historical records for four central Texas river basins challenges widespread perceptions that woody plants have the opposite effects on streams and aquifers.

The researchers found evidence that, from around 1890 to 1960, overgrazing and resultant soil degradation, not encroachment by woody plants, were the main culprits behind reductions in streamflows and recharging of groundwater in the semiarid central region known as the Edwards Plateau. The region is the primary water source for the Edwards Aquifer, which supplies the city of San Antonio and numerous smaller municipalities.

Large numbers of cattle, sheep, and goats that continuously grazed the area's rangelands led to widespread soil degradation, partly hindering the amount of water recharging springs and groundwater, says hydrologist Bradford Wilcox of Texas A&M University and Texas AgriLife Research, in College Station, Texas.

He and Yun Huang, a former graduate student at Texas A&M, will publish their results in an upcoming issue of Geophysical Research Letters, a journal of the American Geophysical Union (AGU).

From 1880 to 1900, there were more animals on the land than it could support, Wilcox says. For a short period of time near the turn of the last century, stocking rates were 10 times greater than current levels. Since the late 1900s, however, as fewer cattle and other livestock were used on the land for agricultural production, the region has gone through revitalization.

"As a result, these landscapes are recovering, but they've also converted to woody plants," Wilcox notes. "We're also seeing large-scale increases in the amount of spring flows. This is opposite of what everybody is presuming -[which is that] the trees are there sucking up all of this water. The trees are actually allowing the water to infiltrate."

In fact, spring flows are twice as high as they were prior to 1950, he adds.

"This area was basically converted from grassland to shrubland after many years of heavy livestock grazing. What people have forgotten is that in the time period between healthy grasslands and the current shrublands, there was an extended period when the land was quite degraded. Subsequent to 1960, livestock numbers have declined and the landscape has recovered although there are now more cedar than in the past," Wilcox explains.

In the new study, he and Huang, who is now with LBG Guyton, in Austin, assess the hydrological changes that have taken place in the region as patterns of land use and vegetation changed. To do so, the researchers analyzed annual measurements dating back to 1925, or earlier, for the Nueces, Frio, Guadulupe, and Llano rivers. The measurements provide an annual record of 'baseflow,' or flow derived from groundwater only (i.e. springs) and of 'stormflow' or flow resulting from rainfall, for those rivers.

The scientists report that the total flow in the three of the four rivers has gone up in recent decades, "largely because contributions in the form of baseflow have increased." The baseflow of the fourth river also increased, although its total flow did not. Yet, rainfall in the region hasn't changed significantly.

Although the prevailing wisdom has been that proliferation of woody plants stifles infiltration of water back into aquifers, the new results suggest otherwise.

Moreover, the results have implications beyond the Edwards Plateau, Wilcox and Huang maintain, applying in general to "semiarid and subhumid rangelands in which springs and intermittent or perennial streams are found." For such regions, the transition to woody plants appears to be good news for regional water resources.

Images:
Photos of rangeland on the Edwards Plateau in degraded and recovering states, plus a map of the four studied river basins (and captions) are available for download with AGU's posted press release at:

http://www.agu.org/news/press/pr_archives/2010/2010-06.shtml

Title:
"Woody Plant Encroachment Paradox: Rivers Rebound as Degraded Grasslands Convert to Woodlands"
Authors:
Bradford P. Wilcox and Yun Huang, Ecosystem Science and Management, Texas A&M University, College Station, Texas, USA.
Contact information for authors:
Brad Wilcox, Professor, Department of Ecosystem Science and Management, 979-458-1899, bwilcox@tamu.edu
AGU Contact:
Peter Weiss
+1 (202) 777 7507
pweiss@agu.org
Texas A&M Contact:
Blair Fannin
+1 (979) 845-2259
b-fannin@tamu.edu

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>