Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas earthquake study cites 'plausible cause'

11.03.2010
Dallas-Fort Worth earthquakes coincident with activity associated with natural gas production

A study of seismic activity near Dallas/Fort Worth International Airport by researchers from Southern Methodist University and the University of Texas at Austin reveals that the operation of a saltwater injection disposal well in the area was a "plausible cause" for the series of small earthquakes that occurred in the area between Oct. 30, 2008, and May 16, 2009.

The incidents under study occurred in an area of North Texas where the vast Barnett Shale geological formation traps natural gas deposits in subsurface rock. Production in the Barnett Shale relies on the injection of pressurized water into the ground to crack open the gas-bearing rock, a process known as "hydraulic fracturing." Some of the injected water is recovered with the produced gas in the form of waste fluids that require disposal.

The earthquakes do not appear to be directly connected to the drilling, hydraulic fracturing or gas production in the Barnett Shale, the study concludes. However, re-injection of waste fluids into a zone below the Barnett Shale at the nearby saltwater disposal well began in September 2008, seven weeks before the first DFW earthquakes occurred and none were recorded in the area after the injection well stopped operating in August 2009.

The largest of the DFW-area earthquakes was a 3.3 magnitude event reported by the USGS National Earthquake Information Center.

A state tectonic map prepared by the Texas Bureau of Economic Geology shows a northeast-trending fault intersects the Dallas-Tarrant County line approximately at the location where the DFW quakes occurred. The study concludes, "It is plausible that the fluid injection in the southwest saltwater disposal well could have affected the in-situ tectonic stress regime on the fault, reactivating it and generating the DFW earthquakes."

An SMU team led by seismologists Brian Stump and Chris Hayward placed portable, broadband seismic monitoring equipment in the area after the earthquakes began. The seismographs recorded 11 earthquakes between Nov. 9, 2008 and Jan. 2, 2009 that were too small to be felt by area residents. Cliff Frohlich and Eric Potter of UT-Austin joined the SMU team in studying the DFW-area sequence of "felt" earthquakes as well as the 11 "non-felt" earthquakes. Their study appears in the March issue of The Leading Edge, a publication of the Society of Exploration Geophysicists.

The SMU team also installed temporary monitors in and around Cleburne, Texas where another series of small earthquake began June 2, 2009 – but results from that study are not yet available.

Stump and Hayward caution that the DFW study raises more questions than it answers.

"What we have is a correlation between seismicity, and the time and location of saltwater injection," Stump said. "What we don't have is complete information about the subsurface structure in the area – things like the porosity and permeability of the rock, the fluid path and how that might induce an earthquake."

"More than 200 saltwater disposal wells are active in the area of Barnett production," the study notes. "If the DFW earthquakes were caused by saltwater injection or other activities associated with producing gas, it is puzzling why there are only one or two areas of felt seismicity."

Further compounding the problem, Hayward said, is that there is not a good system in place to measure the naturally occurring seismicity in Texas: "We don't have a baseline for study."

Enhanced geothermal projects also rely on methods of rock fracturing and fluid circulation. Geological carbon sequestration, an approach being researched to combat climate change, calls for pumping large volumes of carbon dioxide into subsurface rock formations. "It's important we understand why and under what circumstances fluid injection sometimes causes small, felt earthquakes so that we can minimize their effects," Frohlich said.

The study notes that fault ruptures for typical induced earthquakes generally are too small to cause much damage.

"There needs to be collaboration between universities, the state of Texas, local government, the energy industry and possibly the federal government for study of this complicated question of induced seismicity," Stump said. "Everyone wants quick answers. What I can tell you is the direction these questions are leading us."

Find the full report at: http://smu.edu/newsinfo/pdf-files/earthquake-study-10march2010.pdf

View the report as posted by The Leading Edge at: http://dx.doi.org/10.1190/1.3353720

Report Authors:

Dr. Cliff Frohlich, Associate Director, Senior Research Scientist, Institute for Geophysics, UT-Austin
Eric Potter, Program Director, Bureau of Economic Geology, UT-Austin
Dr. Chris Hayward, Director, Geophysics Research Projects, Huffington Department of Earth Sciences, SMU

Dr. Brian Stump, Claude C. Albritton, Jr. Chair, Huffington Department of Earth Sciences, SMU

Kim Cobb | EurekAlert!
Further information:
http://www.smu.edu

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>