Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test adds to scientists’ understanding of Earth’s history, resources

06.12.2012
A new study co-authored by a University of Florida researcher provides the first direct chronological test of sequence stratigraphy, a powerful tool for exploring Earth’s natural resources.

The model allows geologists to better understand how sedimentary rocks are related to one another in time and space and predict what types of rocks are located in different areas. The information may help scientists more reliably interpret various aspects of Earth’s history such as long-term climate changes or extinction events, and also benefit companies searching for the best locations to drill for oil.

The study published online Friday in Geology uses extensive numerical dating of fossil shells to verify key predictions of the sequence stratigraphy model. Although used successfully for more than 30 years as a theoretical framework for interpreting and exploring rock bodies, the model had never been proven quantitatively by direct numerical dating.

“Paleontologists and geologists are well aware of the fact that you should not take the fossil record at face value because you will then see changes through time that may not be meaningful,” said study co-author Michal Kowalewski, a curator of invertebrate paleontology at the Florida Museum of Natural History on the UF campus. “However, by using dating to quantify how the resolution changes through time, we can improve quality control on our data and develop better strategies for reconstructing the history of life more accurately.”

In the study, researchers used racemization, a technique in which amino acid ratios are obtained to estimate the age of fossils from the most recent geological record. Relative age estimates were calibrated using radiocarbon to date about 250 mollusk shells extracted from cores drilled in the Po Plain in northern Italy. The technique, developed over the last 30 years, has made dating of large numbers of shells affordable and efficient, Kowalewski said.
Kowalewski is principal investigator on the National Science Foundation-funded project, a four-year study involving a team of scientists from the University of Bologna and Northern Arizona University.

“We were thrilled to learn that sedimentary rocks assemble through time exactly as predicted,” said Kowalewski, who recently relocated from Virginia Tech and is the Jon L. and Beverly A. Thompson Chair of Invertebrate Paleontology at the Florida Museum. “The results are not only a direct validation of the sequence stratigraphic model, but also provide us with direct numerical estimates of changes in the resolution of the fossil record as a function of relative changes in sea level.”

As the model predicted for the geological setting of the Po Plain, the sediments accumulated at an increasingly slower pace during initial phases of sea level rise, culminating with horizons that formed so slowly that shells from multiple millennia were mixed within the same sediment layers. Following the sea level rise, sediment was deposited at an increasingly faster pace.

“We are pretty confident that the primary driver of sea level changes in this time frame was climate, but that’s not always the case in the geological record,” Kowalewski said. ‘We can now provide a more informed constraint on timing of the most recent sea level rise in the northern Adriatic.”

Because the Po Plain contains young sediments dating to about the last 10,000 years, part of the cycle researchers tested includes changes occurring today, said Carlton Brett, a geology professor at the University of Cincinnati. As sea level rises quickly, sediment accumulates in bays and river mouths, leaving little sediment offshore, Brett said.
“I think what they’re doing is groundbreaking in the sense that they’re testing a model that is one of the most important models in sedimentary geology that has ever come down the pipe,” Brett said. “As one who uses that model a lot and makes those assumptions about why we are getting shell beds offshore, the fact that they have put numbers on the tests gives us very good confidence that we’re on the right track.”

The team plans to continue working in the Po Plain, a well-understood system that records the most recent millennia of the region’s geological history. The project can help researchers better understand human-induced changes because the Po Plain sediments document the fossil record of ecosystems that directly predate what many geologists refer to as the Anthropocene Epoch, the new geologic era of human modification of the natural world.

Study co-authors include Daniele Scarponi and Alessandro Amorosi of the University of Bologna, and Darell Kaufman of Northern Arizona University.

Credits

Writer
Danielle Torrent
Media Contact
Paul Ramey, pramey@flmnh.ufl.edu
Source
Michal Kowalewski, mkowalewski@flmnh.ufl.edu

Michal Kowalewski | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Earth Sciences:

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

nachricht New research unlocks forests' potential in climate change mitigation
21.04.2017 | Clemson University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>