Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Terrestrial biodiversity recovered faster after Permo-Triassic extinction than previously believed

10.10.2011
Results contradict several theories for cause of extinction

While the cause of the mass extinction that occurred between the Permian and Triassic periods is still uncertain, two University of Rhode Island researchers collected data that show that terrestrial biodiversity recovered much faster than previously thought, potentially contradicting several theories for the cause of the extinction.

David Fastovsky, URI professor of geosciences, and graduate student David Tarailo found that terrestrial biodiversity recovered in about 5 million years, compared to the 15- to 30-million year recovery period that earlier studies had estimated. The recovery period in the marine environment is believed to have taken 4 to 10 million years, about twice as long as the recovery period after most other mass extinctions.

The results of their research were presented today at the annual meeting of The Geological Society of America in Minneapolis.

"Our results suggest that the cause of the extinction didn't spill over as severely into the terrestrial realm as others have claimed," said Fastovsky. "There was still a terrestrial extinction, but its repercussions weren't more long term than those in the marine realm, and possibly less."

Since the URI study suggests that the terrestrial realm recovered at least as fast as the marine realm, it rules out those theories stating that the extinction, which took place about 251 million years ago, was caused by global events affecting both the marine and terrestrial environments equally.

The researchers compiled fossil faunal lists from the Moenkopi Formation in northeastern Arizona, which contains fossil vertebrates from the Middle Triassic, and compared them to faunas from the nearby Chinle Formation, containing Late Triassic fauna.

According to Tarailo and Fastovsky, if it took 30 million years for the terrestrial fauna to recover, then the older formation should have lower diversity than the younger one, because it would still be compromised by the conditions that caused the extinction. But they found the diversity to be comparable, meaning that the diversity recovered more rapidly than that.

"Some may argue that our results are just one data point in North America, but if North America is representative of the rest of the world, then our results apply to the entire world," Fastovsky said.

The researchers' next step is to expand their analysis to other fossil deposits around the world using the same techniques to test their results.

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>