Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Terrestrial biodiversity recovered faster after Permo-Triassic extinction than previously believed

10.10.2011
Results contradict several theories for cause of extinction

While the cause of the mass extinction that occurred between the Permian and Triassic periods is still uncertain, two University of Rhode Island researchers collected data that show that terrestrial biodiversity recovered much faster than previously thought, potentially contradicting several theories for the cause of the extinction.

David Fastovsky, URI professor of geosciences, and graduate student David Tarailo found that terrestrial biodiversity recovered in about 5 million years, compared to the 15- to 30-million year recovery period that earlier studies had estimated. The recovery period in the marine environment is believed to have taken 4 to 10 million years, about twice as long as the recovery period after most other mass extinctions.

The results of their research were presented today at the annual meeting of The Geological Society of America in Minneapolis.

"Our results suggest that the cause of the extinction didn't spill over as severely into the terrestrial realm as others have claimed," said Fastovsky. "There was still a terrestrial extinction, but its repercussions weren't more long term than those in the marine realm, and possibly less."

Since the URI study suggests that the terrestrial realm recovered at least as fast as the marine realm, it rules out those theories stating that the extinction, which took place about 251 million years ago, was caused by global events affecting both the marine and terrestrial environments equally.

The researchers compiled fossil faunal lists from the Moenkopi Formation in northeastern Arizona, which contains fossil vertebrates from the Middle Triassic, and compared them to faunas from the nearby Chinle Formation, containing Late Triassic fauna.

According to Tarailo and Fastovsky, if it took 30 million years for the terrestrial fauna to recover, then the older formation should have lower diversity than the younger one, because it would still be compromised by the conditions that caused the extinction. But they found the diversity to be comparable, meaning that the diversity recovered more rapidly than that.

"Some may argue that our results are just one data point in North America, but if North America is representative of the rest of the world, then our results apply to the entire world," Fastovsky said.

The researchers' next step is to expand their analysis to other fossil deposits around the world using the same techniques to test their results.

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>