Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Termite killer lingers as potent greenhouse gas

11.03.2009
Sulfuryl fluoride, a compound commonly used to rid buildings of termites and other pests, is a greenhouse gas that remains in the atmosphere about 36 years, six to ten times longer than had been thought previously, according to a new study.

The concentration of the gas rose at a rate of 4 to 6 percent per year between 1978 and 2007, to a global atmospheric abundance by the end of 2007 of about 1.5 parts per trillion, the researchers report.

These first-ever measurements of sulfuryl dioxide appear in the March 12 Journal of Geophysical Research, a publication of the American Geophysical Union (AGU).

One kilogram of sulfuryl dioxide emitted into the atmosphere has a global warming potential approximately 4,800 times greater than one kilogram of carbon dioxide. However, amounts of sulfuryl fluoride released into the atmosphere (about 2,000 metric tons per year) are far lower than those of carbon dioxide (about 30 billion metric tons per year). So, the absolute effect of present sulfuryl dioxide emissions on global warming is comparably small.

Still, the newfound extended lifetime of the gas "has to be taken into account before large amounts are emitted into the atmosphere," says Jens Muehle, an atmospheric chemist at Scripps Institution of Oceanography, in La Jolla, Calif., and leader of the study. Sulfuryl fluoride became widely used for structural fumigation after a 1987 international treaty to protect the ozone layer required gradual discontinuation of another fumigant-methyl bromide-known to have strong ozone-depleting characteristics.

"Such fumigants are very important for controlling pests in the agricultural and building sectors," says Ron Prinn of the Massachusetts Institute of Technology, in Cambridge, Mass., and a co- author on the new paper. But with methyl bromide being phased out, "industry had to find alternatives, so sulfuryl fluoride has evolved to fill the role." Sulfuryl fluoride is regulated as a toxic substance but not currently as a greenhouse gas.

Muehle said he started detecting an unknown compound in air samples taken at the Scripps pier in early 2004 with a newly developed measurement instrument. He identified the compound as sulfuryl dioxide and concluded that the large fluctuations seen at the pier were likely related to the fumigation of local buildings. The team expanded the analysis to air samples routinely collected around the world at stations of the NASA-funded Advanced Global Atmospheric Gases Experiment (AGAGE) network and to old air samples archived in metal cylinders.

With the help of atmospheric computer models, the research team determined that the most important removal process of sulfuryl fluoride is dissolution into the ocean, where it is decomposed by chemical reactions.

Surprisingly, actual sulfuryl fluoride emissions into the atmosphere over the period studied were about one third less than expected from global industrial production estimates provided by Dow AgroSciences, the chief manufacturer of sulfuryl fluoride in the United States.

"It's extremely important to have independent verification of emissions," says Muehle. "You can't have regulation without verification and you can't have verification without measurements."

The team's report follows closely on the announcement of a similar finding, the greater-than- expected prevalence of nitrogen trifluoride-a gas used as a cleaning agent during the manufacture of thin-film solar cells, flat panel monitors and other electronics. The first measurements of nitrogen trifluoride, reported in October [http://www.agu.org/sci_soc/prrl/2008-35.html], have led to calls for it to be included in the list of greenhouse gases whose emissions are regulated by international treaties. Similarly discussions are underway regarding sulfuryl fluoride.

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org
http://www.agu.org/jinstructions.shtml
http://www.agu.org/sci_soc/prrl/primages.html

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>