Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Termite killer lingers as potent greenhouse gas

11.03.2009
Sulfuryl fluoride, a compound commonly used to rid buildings of termites and other pests, is a greenhouse gas that remains in the atmosphere about 36 years, six to ten times longer than had been thought previously, according to a new study.

The concentration of the gas rose at a rate of 4 to 6 percent per year between 1978 and 2007, to a global atmospheric abundance by the end of 2007 of about 1.5 parts per trillion, the researchers report.

These first-ever measurements of sulfuryl dioxide appear in the March 12 Journal of Geophysical Research, a publication of the American Geophysical Union (AGU).

One kilogram of sulfuryl dioxide emitted into the atmosphere has a global warming potential approximately 4,800 times greater than one kilogram of carbon dioxide. However, amounts of sulfuryl fluoride released into the atmosphere (about 2,000 metric tons per year) are far lower than those of carbon dioxide (about 30 billion metric tons per year). So, the absolute effect of present sulfuryl dioxide emissions on global warming is comparably small.

Still, the newfound extended lifetime of the gas "has to be taken into account before large amounts are emitted into the atmosphere," says Jens Muehle, an atmospheric chemist at Scripps Institution of Oceanography, in La Jolla, Calif., and leader of the study. Sulfuryl fluoride became widely used for structural fumigation after a 1987 international treaty to protect the ozone layer required gradual discontinuation of another fumigant-methyl bromide-known to have strong ozone-depleting characteristics.

"Such fumigants are very important for controlling pests in the agricultural and building sectors," says Ron Prinn of the Massachusetts Institute of Technology, in Cambridge, Mass., and a co- author on the new paper. But with methyl bromide being phased out, "industry had to find alternatives, so sulfuryl fluoride has evolved to fill the role." Sulfuryl fluoride is regulated as a toxic substance but not currently as a greenhouse gas.

Muehle said he started detecting an unknown compound in air samples taken at the Scripps pier in early 2004 with a newly developed measurement instrument. He identified the compound as sulfuryl dioxide and concluded that the large fluctuations seen at the pier were likely related to the fumigation of local buildings. The team expanded the analysis to air samples routinely collected around the world at stations of the NASA-funded Advanced Global Atmospheric Gases Experiment (AGAGE) network and to old air samples archived in metal cylinders.

With the help of atmospheric computer models, the research team determined that the most important removal process of sulfuryl fluoride is dissolution into the ocean, where it is decomposed by chemical reactions.

Surprisingly, actual sulfuryl fluoride emissions into the atmosphere over the period studied were about one third less than expected from global industrial production estimates provided by Dow AgroSciences, the chief manufacturer of sulfuryl fluoride in the United States.

"It's extremely important to have independent verification of emissions," says Muehle. "You can't have regulation without verification and you can't have verification without measurements."

The team's report follows closely on the announcement of a similar finding, the greater-than- expected prevalence of nitrogen trifluoride-a gas used as a cleaning agent during the manufacture of thin-film solar cells, flat panel monitors and other electronics. The first measurements of nitrogen trifluoride, reported in October [http://www.agu.org/sci_soc/prrl/2008-35.html], have led to calls for it to be included in the list of greenhouse gases whose emissions are regulated by international treaties. Similarly discussions are underway regarding sulfuryl fluoride.

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org
http://www.agu.org/jinstructions.shtml
http://www.agu.org/sci_soc/prrl/primages.html

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>