Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ten Years After Nisqually Quake, Northwest’s Seismic Dangers Still Lurk

18.02.2011
In the decade since the Nisqually earthquake shook buildings, rattled nerves and rolled the ground in Western Washington, the level of seismic danger in the Pacific Northwest hasn’t changed. But scientific ideas about the danger have evolved and the ability to study and prepare for it has improved immensely.

Scientists from the University of Washington and the U.S. Geological Survey have increased their knowledge about the three different types of non-volcanic earthquakes that occur in the Northwest, and are learning how unfelt “episodic tremor and slip” events relate to seismic risk. The number of seismic sensors and the territory they monitor has tripled. Engineering standards have improved to meet the region’s seismic risks.

“Most places in the world that experience earthquakes have a better recorded history than we have, so we’re at somewhat of a disadvantage,” said Stephen Malone, a UW emeritus research professor of Earth and space sciences.

Malone was director of the Pacific Northwest Seismic Network, based at UW, when the magnitude 6.8 Nisqually quake struck just before 11 a.m. PST on Ash Wednesday, Feb. 28, 2001. Similar to quakes centered near Olympia in 1949 and Tacoma in 1965, the Nisqually quake was about 32 miles deep, near the interface where the Juan de Fuca tectonic plate is descending beneath the North American plate.

These intraslab quakes have been the most common damaging earthquakes in Western Washington’s recorded history, but the time frame in which they recur is probably the least understood, said John Vidale, a UW Earth and space sciences professor and current director of the seismic network.

“They are not regular. There is no reason to believe another one is overdue to happen,” Vidale said, though he added that if history is any guide Western Washington is unlikely to be as seismically quiet as it has been for the last five years.

The geological survey estimates there is a better-than-80 percent chance of an intraslab earthquake of magnitude 6.5 or greater in this region within the next 50 years.

Intraslab quakes are not the most-damaging seismic events in the region. Shallow quakes on crustal faults – such as the Seattle, Tacoma and South Whidbey Island faults – don’t happen nearly as often but can cause more significant damage near their source and also could generate tsunamis in Puget Sound. The last major quake on the Seattle fault, estimated at magnitude 7.4, happened about 1,100 years ago, raising the south end of Bainbridge Island and what is now Alki Beach in West Seattle 15 to 20 feet and generating a Puget Sound tsunami.

Then there are megathrust, or subduction zone, quakes that mostly occur off the Washington and Oregon coast and could be almost as powerful as the magnitude 9.1 quake that struck south Asia in 2004 and generated a deadly tsunami. As the Juan de Fuca plate slides beneath the North American plate, a process called subduction, the plates are locked together near the surface and stress continues to build up over centuries. When the locked zone gives way, a mammoth earthquake results.

The last subduction earthquake here, in January 1700, generated a tsunami that did damage in Japan and affected the entire Pacific Basin. Such a quake could be less damaging than, say, one on the Seattle fault, since it would be farther away from the population centers of Western Washington. But the prolonged shaking, perhaps five to nine minutes, would still cause significant damage throughout the entire Pacific Northwest west of the Cascade Range.

Scientists know these magnitude 9 earthquakes in the Cascadia subduction zone occur on average every 500 years, though they can happen on shorter or longer time scales. Vidale estimates the danger now is about half what it will be in 200 years. “The risk is not as high as it’s going to get, if the models are correct,” he said.

The Nisqually earthquake was recorded on the first modern strong-motion sensors deployed in Western Washington. Since 2001, the coverage has tripled to more than 130 stations, and 30 more are in the works. A new array of sensors has been deployed to record liquefaction, which occurs when the shaking pushes ground water to the surface to liquefy the soil. There are few detailed liquefaction records in the United States, and some came from the Nisqually quake.

Other developments since the 2001 quake include:

***Refinement of hazard maps and models to give better estimates of the shaking expected in future earthquakes.

***Documentation of new faults. The Seattle and Price Lake (Olympic Peninsula) faults were known in 2001. Several others have been documented since, including Tacoma, Frigid Creek, Canyon River, South Whidbey Island (which probably has had the largest previous quakes), Utsalady and, in eastern Washington, Ellensburg and Umtanum Ridge.

***Shake maps and “Did You Feel It” reporting available to the public automatically within 10 minutes of larger earthquakes.

***Building code changes based on improvements in seismic engineering and adoption of the International Building Code, with standards linked to the best seismic science.

***Increased public awareness and preparedness.

***Discovery of episodic tremor and slip, or slow-slip. These unfelt events happen about every 15 months, last for several weeks and release as much energy as a magnitude 6.5 earthquake. They are adding to an already complex regional seismic picture.

***Improved and more numerous broadband seismometers to see earthquakes clearly over the entire region.

“We’re more evenly monitoring the Pacific Northwest, including parts of eastern Oregon and eastern Washington that weren’t monitored before,” Malone said. “We also have better monitoring of the Cascades volcanoes.”

Scientists here and around the world are trying to devise methods to predict earthquakes, “but right now we can’t even see how that might work,” Vidale said. In addition, there are hopes for refined forecasting ability, based on historic patterns and general probability, he said.

It also is possible now to develop an early warning system, using data from sensors close to an earthquake source to determine which direction the waves will go and how strong the shaking might be. Such systems are already being used in Japan, Mexico and elsewhere.

“That could give people advance warning ranging from a few seconds to a few minutes,” Vidale said. “The question is whether it is worth the financial cost.”

Nisqually Earthquake – Quick Facts
Date: Feb. 28, 2001
Epicenter: Anderson Island, about 10 miles from Olympia
Depth: 53 kilometers, or about 32 miles
Damage: Estimates from $500 million to more than $2 billion
Injuries: 300-400
Deaths: One indirectly attributed to the earthquake.
Structures with significant damage: Alaskan Way Viaduct and Magnolia Bridge, Seattle; the Washington State Capitol and the Fourth Street Bridge, Olympia; control tower, Seattle-Tacoma International Airport; unreinforced masonry or concrete buildings in the Pioneer Square and Sodo neighborhoods of Seattle.

A list of expert sources for information on Pacific Northwest earthquakes is at http://www.washington.edu/news/articles/experts-on-pacific-northwest-earthquakes.

On the Web:
Pacific Northwest Seismic Network: http://www.pnsn.org/
City of Seattle Office of Emergency Management: http://www.seattle.gov/emergency/

Washington State Emergency Management Division: http://www.emd.wa.gov/

High-resolution images of Nisqually earthquake damage that are in the public domain, via Wikimedia, are available.

Vince Stricherz | Newswise Science News
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>