Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tectonic micro plate discovered under Tibet

31.10.2011
In Central Tibet, a separate, relatively homogenous Tibetan plate exists with a thickness of about 100 kilometres.

This plate is moved from south to north-east over the Eurasian plate and pushes it down 250 kilometres deep into the mantle.


GFZ Potsdam

This new view on the plate tectonic collision of India and Eurasia was presented by team of scientists from the GFZ German Research Centre for Geosciences in cooperation with Chinese, American and British scientists in the latest issue of "Nature Geosciences" (Advance Online Publication on Nature Geoscience).

The Indian tectonic plate is currently moving at a speed of about five centimetres per year to the northeast. "/In its collision with Eurasia it pushes the Himalayas and the Tibetan plateau up like a bulldozer, bores itself 500 kilometres under Tibet and is clearly detectable up to a depth of about 250 kilometres. We had already shown that in our previous studies/”, says Professor Rainer Kind of the GFZ (Helmholtz Association). "/But until now there was not enough data to see how the tectonic plates behave in the collision on the northern edge of Tibet/."

In continuation of earlier joint experiments, the team of geoscientists therefore carried out an additional major seismological project in northern Tibet. With this so-called "receiver function" method, the boundary layers of different materials are mapped within the Earth using seismic waves from distant earthquakes, practically scanning the subsurface of Tibet from below. From the results the deformation of the tectonic plates can be determined.

The images of the Earth's interior up to several hundred kilometres depth obtained with this method are of a much higher resolution than any previous images. As a result, the newly discovered Tibetan plate appears as a much more defined, independent area in this part of the lithosphere between India and Eurasia, south of the Tarim Basin.

Wenjin Zhao, Prakash Kumar, James Mechie, Rainer Kind, Rolf Meissner, Zhenhan Wu, Danian Shi, Heping Su, Guangqi Xue, Marianne Karplus, Frederik Tilmann:/ „Tibetan plate overriding the Asian plate in central and northern Tibet”/, Nature Geosciences, DOI: 10.1038/NGEO1309

Franz Ossing
Helmholtz Centre Potsdam
GFZ German Research Centre for Geosciences
Deutsches GeoForschungsZentrum
- Public Relations -
Telegrafenberg
14473 Potsdam / Germany
e-mail: ossing@gfz-potsdam.de
Tel. ++49 (0)331-288 1040
Fax ++49 (0)331-288 1044

Franz Ossing | GFZ Potsdam
Further information:
http://www.gfz-potsdam.de/

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

Study shows how water could have flowed on 'cold and icy' ancient Mars

18.10.2017 | Physics and Astronomy

Navigational view of the brain thanks to powerful X-rays

18.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>