Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technological options are critical for economic viability of 2°C climate target

15.03.2010
Tapping renewable energy sources, capturing and storing of industrial emissions of carbon dioxide and improving energy efficiency are pivotal for holding the increase in global temperature below two degrees Celsius.

In a special issue of "The Energy Journal", a team of researchers of the Potsdam Institute for Climate Impact Research (PIK) and four other European institutions reports that atmospheric concentrations of greenhouse gases can be stabilized at correspondingly low levels at moderate costs. However, costs, as well as the dependency on specific technologies, increase with the chances to achieve the 2°C target.

"We have started from the assumption of a 'first-best' world where current and newly developed technologies are fully available," says Ottmar Edenhofer, chief economist at PIK. "However, we have also investigated a 'second-best' world where some of the technologies are not available or have a limited potential," adds the lead author of the article 'The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs'. The scientists found that the costs of mitigation are substantially higher or that ambitious climate targets are actually unattainable in the second-best world.

As part of the EU-funded project "Adaptation and mitigation strategies: supporting European climate policy" (ADAM) the researchers have explored the technological options for reaching three different stabilization levels of atmospheric greenhouse gases. These correspond to carbon dioxide concentrations of 550, 450, and 400 parts per million (ppm) with a 15, 50, and 75 percent chance, respectively, to achieve the 2°C target. The scientists used five state-of-the-art energy-environment-economy models to illustrate the technological and economic scenarios and systematically compared the results.

"The models provide a number of technology pathways that have a high likelihood of achieving the 2°C target," says Brigitte Knopf, the scientific coordinator of the ADAM model comparison. All models achieved the low stabilization at 400 ppm at moderate costs. Expressed as aggregated gross domestic product losses until 2100, the global mitigation costs are reported to be below 2.5 percent. But this requires a portfolio of technologies, the researchers found. "There is no silver bullet to tackle climate change, but, interestingly, the models agree on the ranking of importance of energy technologies," says Knopf.

Without either carbon capture and storage (CCS) or the expansion of renewable energy beyond business-as-usual, stabilization of atmospheric greenhouse gases becomes significantly more expensive. Ambitious climate mitigation targets might not be achieved at all. In one model, the extensive use of biomass for heat and power production was another essential option for the feasibility of the low stabilization level. In two other models, costs doubled with a limitation of biomass use to a sustainable potential.

In contrast, the effect of nuclear energy as a mitigation option is limited as refraining from the expansion of nuclear energy is possible at almost no additional costs. Furthermore, the models show that even a global phase out of nuclear energy is possible at slightly increased mitigation costs.

"It is clear that a model analysis alone cannot address the full range of economic, political and risk management issues raised by the use of some of the technologies," says Knopf. The feasibility and potential risks of CCS, for example, are largely unknown today and also to what extent the extensive use of biomass would compete with food production and nature conservation. But the study does indicate clearly that the development of a portfolio of technologies is crucial in order to keep mitigation costs low, paving the way for a global climate agreement.

Article: Ottmar Edenhofer, Brigitte Knopf, Terry Barker, Lavinia Baumstark, Elie Bellevrat, Bertrand Château, Patrick Criqui, Morna Isaac, Alban Kitous, Socrates Kypreos, Marian Leimbach, Kai Lessmann, Bertrand Magné, Serban Scrieciu, Hal Turton, Detlef P. van Vuuren (2009) The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs. The Energy Journal, Volume 31, Special Issue, http://www.iaee.org/en/publications/journal.aspx

Further reading:
Project homepage at PIK:
http://www.pik-potsdam.de/project-adam
International project homepage
http://www.adamproject.eu/
For further information or interviews, please contact the PIK press office:
Phone: +49 331 288 25 07
E-mail: press@pik-potsdam.de

Patrick Eickemeier | idw
Further information:
http://www.pik-potsdam.de
http://www.pik-potsdam.de/project-adam

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>