Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique measures evaporation globally

12.04.2013
Researchers at Columbia Engineering and Boston University have developed the first method to map evaporation globally using weather stations, which will help scientists evaluate water resource management, assess recent trends of evaporation throughout the globe, and validate surface hydrologic models in various conditions. The study was published in the April 1 online Early Edition of Proceedings of the National Academy of Sciences (PNAS).

"This is the first time we've been able to map evaporation in a consistent way, using concrete measurements that are available around the world," says Pierre Gentine, assistant professor of earth and environmental engineering at Columbia. "This is a big step forward in our understanding of how the water cycle impacts life on Earth."

The Earth's surface hydrologic cycle comprises precipitation, runoff, and evaporation fluctuations. Scientists can measure precipitation across the globe using rain gauges or microwave remote sensing devices. In places where streamflow measurements are available, they can also measure the runoff. But measuring evaporation has always been difficult.

"Global measurements of evaporation have been a longstanding and frustrating challenge for the hydrologic community," says Gentine. "And now, for the first time, we show that simple weather station measurements of air temperature and humidity can be used across the globe to obtain the daily evaporation."

Evaporation is a key component of the hydrological cycle: it tells us how much water leaves the soil and therefore how much should be left there for a broad range of applications such as agriculture, water resource management, and weather forecasting.

Gentine, who studies the relationship between hydrology and atmospheric science and its impact on climate change, collaborated on this research with Guido D. Salvucci, professor and chair of the Department of Earth and Environmental Sciences at Boston University and the paper's lead author. Using data from weather stations, widely available across the globe, they focused on evaporation and discovered an emergent relationship between evaporation and relative humidity that gave them the evaporation rates.

Gentine and Salvucci plan to provide daily maps of evaporation around the world that will enable scientists to evaluate changes in water table, calculate water requirements for agriculture, and measure more accurate evaporation fluctuations into the atmosphere.

"Sharing our data with researchers around the world will help us learn more about the Earth's hydrologic cycle and assess recent trends such as whether it is accelerating," adds Gentine. "Acceleration could greatly impact our climate, locally, nationally, and globally."

The research has been funded by the National Science Foundation.

Columbia Engineering

Columbia University's Fu Foundation School of Engineering and Applied Science, founded in 1864, offers programs in nine departments to both undergraduate and graduate students. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to NSF-NIH funded centers in genomic science, molecular nanostructures, materials science, and energy, as well as one of the world's leading programs in financial engineering. These interdisciplinary centers are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of modern society's more difficult challenges.

Holly Evarts | EurekAlert!
Further information:
http://www.columbia.edu
http://www.engineering.columbia.edu/

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>