Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team finds natural reasons behind nitrogen-rich forests

18.01.2012
Many tropical forests are extremely rich in nitrogen even when there are no farms or industries nearby, says Montana State University researcher Jack Brookshire.

It's because of biological interactions that occur naturally in the forests, Brookshire and four colleagues said in a paper they published Jan. 15 in the online version of the journal Nature Geoscience.

Disputing some long-held beliefs about high nitrogen levels in tropical forests, Brookshire said pollution isn't always the reason behind it. It can also be caused by natural interactions between the forest and nutrient cycles. Brookshire and his team suggested that in mountainous tropical forests, nitrogen availability may not limit plant growth or its response to higher carbon dioxide levels in the atmosphere.

Brookshire began his study in 2006 when he was a postdoctoral researcher at Princeton University. He continued it after moving to MSU in 2009. He is now an assistant professor in the Department of Land Resources and Environmental Sciences.

To conduct their study, Brookshire, two scientists from Princeton University and two researchers from the Stroud Water Research Center in Avondale, Pa., used data collected between 1990 and 2008 to examine the concentration of dissolved nitrogen compounds and the isotopic composition of nitrate in streams in six mountain forests in Costa Rica and 55 mountain forests across Central American and the Caribbean.

All of the forests were old-growth tropical forests with no signs of large-scale disturbance. They were classified as mountain evergreen, mountain rainforest or cloud forest. Evergreen forests in Costa Rica are at lower altitudes. Rainforests are at higher elevations. Cloud forests are at the highest elevation. They are bathed in clouds or moisture for much of the year.

The researchers also examined new samples that Brookshire collected in Costa Rica and Trinidad. Sampling was an exciting process that involved hiking through thick forests and swimming through narrow rock gorges, Brookshire said. He was able to avoid snake bites, but not the stinging insects or oppressive humidity.

"You don't dry out," Brookshire said.

The research team found high levels of nitrate in the streams of the tropical forests, indicating large losses of bioavailable nitrogen, Brookshire said. They also found evidence that the loss wasn't recent or a one-time thing. They discovered that the nitrate resulted from plant-soil interactions and not directly from atmospheric deposition.

Tropical forests are significant reservoirs for carbon, and their future relies on forest interactions with nutrient cycles, he said.

Scientists in the past have compared the effect of industry and agriculture on the temperate forests of the northern hemisphere, but relatively little research has been conducted on forests near the equator, Brookshire said. He decided to look at forests in Costa Rica and Trinidad because he already had colleagues there and they, like him, were intrigued by the fact that some tropical forests have dramatic nitrogen exports without apparent human causes.

"These systems have a natural capacity to build up levels of nitrates in soil that we only see in the most polluted temperate forests," Brookshire said.

The research published in Nature Geoscience will continue, Brookshire said.

"This is an on-going research project to figure out how forests work in the larger earth climate system and how they might respond to global change," Brookshire said. "The deep mysteries about how these ecosystems work, we are just beginning to understand. Things are much more complex than previously thought."

Co-authors on the Nature Geoscience paper were Lars Hedin and Daniel Sigman at Princeton University, and Denis Newbold and John Jackson from the Stroud Water Research Center. Their research was supported by grants from the A.W. Mellon Foundation, the National Science Foundation, the National Oceanic and Atmospheric Administration and research endowments at Stroud.

Evelyn Boswell | EurekAlert!
Further information:
http://www.montana.edu

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
17.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>