Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team finds natural reasons behind nitrogen-rich forests

18.01.2012
Many tropical forests are extremely rich in nitrogen even when there are no farms or industries nearby, says Montana State University researcher Jack Brookshire.

It's because of biological interactions that occur naturally in the forests, Brookshire and four colleagues said in a paper they published Jan. 15 in the online version of the journal Nature Geoscience.

Disputing some long-held beliefs about high nitrogen levels in tropical forests, Brookshire said pollution isn't always the reason behind it. It can also be caused by natural interactions between the forest and nutrient cycles. Brookshire and his team suggested that in mountainous tropical forests, nitrogen availability may not limit plant growth or its response to higher carbon dioxide levels in the atmosphere.

Brookshire began his study in 2006 when he was a postdoctoral researcher at Princeton University. He continued it after moving to MSU in 2009. He is now an assistant professor in the Department of Land Resources and Environmental Sciences.

To conduct their study, Brookshire, two scientists from Princeton University and two researchers from the Stroud Water Research Center in Avondale, Pa., used data collected between 1990 and 2008 to examine the concentration of dissolved nitrogen compounds and the isotopic composition of nitrate in streams in six mountain forests in Costa Rica and 55 mountain forests across Central American and the Caribbean.

All of the forests were old-growth tropical forests with no signs of large-scale disturbance. They were classified as mountain evergreen, mountain rainforest or cloud forest. Evergreen forests in Costa Rica are at lower altitudes. Rainforests are at higher elevations. Cloud forests are at the highest elevation. They are bathed in clouds or moisture for much of the year.

The researchers also examined new samples that Brookshire collected in Costa Rica and Trinidad. Sampling was an exciting process that involved hiking through thick forests and swimming through narrow rock gorges, Brookshire said. He was able to avoid snake bites, but not the stinging insects or oppressive humidity.

"You don't dry out," Brookshire said.

The research team found high levels of nitrate in the streams of the tropical forests, indicating large losses of bioavailable nitrogen, Brookshire said. They also found evidence that the loss wasn't recent or a one-time thing. They discovered that the nitrate resulted from plant-soil interactions and not directly from atmospheric deposition.

Tropical forests are significant reservoirs for carbon, and their future relies on forest interactions with nutrient cycles, he said.

Scientists in the past have compared the effect of industry and agriculture on the temperate forests of the northern hemisphere, but relatively little research has been conducted on forests near the equator, Brookshire said. He decided to look at forests in Costa Rica and Trinidad because he already had colleagues there and they, like him, were intrigued by the fact that some tropical forests have dramatic nitrogen exports without apparent human causes.

"These systems have a natural capacity to build up levels of nitrates in soil that we only see in the most polluted temperate forests," Brookshire said.

The research published in Nature Geoscience will continue, Brookshire said.

"This is an on-going research project to figure out how forests work in the larger earth climate system and how they might respond to global change," Brookshire said. "The deep mysteries about how these ecosystems work, we are just beginning to understand. Things are much more complex than previously thought."

Co-authors on the Nature Geoscience paper were Lars Hedin and Daniel Sigman at Princeton University, and Denis Newbold and John Jackson from the Stroud Water Research Center. Their research was supported by grants from the A.W. Mellon Foundation, the National Science Foundation, the National Oceanic and Atmospheric Administration and research endowments at Stroud.

Evelyn Boswell | EurekAlert!
Further information:
http://www.montana.edu

More articles from Earth Sciences:

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

nachricht New research unlocks forests' potential in climate change mitigation
21.04.2017 | Clemson University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>