Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team Develops New, Inexpensive Method for Understanding Earthquake Topography

04.09.2014

Using high-resolution topography models not available in the past, geologists can greatly enrich their research.

However, current methods of acquisition are costly and require trained personnel with high-tech, cumbersome equipment. In light of this, Kendra Johnson and colleagues have developed a new system that takes advantage of affordable, user-friendly equipment and software to produce topography data over small, sparsely vegetated sites at comparable (or better) resolution and accuracy to standard methods.


Figure 1 from K. Johnson et al.: Schematic illustration of three methods of producing high-resolution digital topography. Click on figure for larger image.

Their workflow is based on structure from motion (SfM), which uses overlapping photographs of a scene to produce a 3-D model that represents the shape and scale of the terrain. To acquire the photos, Johnson and colleagues attached a camera programmed to take time-lapse photos to a helium balloon or small, remote-controlled glider. They augmented the aerial data by recording a few GPS points of ground features that would be easily recognized in the photographs.

Using a software program called Agisoft Photoscan, they combined the photographs and GPS data to produce a robust topographic model.

Johnson and colleagues note that this SfM workflow can be used for many geologic applications. In this study for GEOSPHERE, Johnson and colleagues focused on its potential in studying active faults that pose an earthquake hazard.

They targeted two sites in southern California, each of which has existing topography data collected using well-established, laser-scanning methods.

The first site covers a short segment of the southern San Andreas fault that historically has not had a large earthquake; however, the ground surface reveals evidence of prehistoric ruptures that help estimate the size and frequency of earthquakes on this part of the fault. The team notes that this evidence is more easily quantified using high-resolution topography data than by geologists working in the field.

The second site covers part of the surface rupture formed during the 1992 Landers earthquake (near Palm Springs, California, USA). Johnson and colleagues chose this site to test the capability of their workflow as part of the scientific response that immediately follows an earthquake.

At each site, they compared their SfM data to the existing laser scanner data and found that the values closely matched. Johnson and colleagues conclude that their new SfM workflow produces topography data at sufficient quality for use in earthquake research.

Contact:
Kea Giles
Managing Editor,
GSA Communications
+1-303-357-1057
kgiles@geosociety.org

Kea Giles | Eurek Alert!

Further reports about: Develops GPS Geological Topography earthquake earthquakes topography

More articles from Earth Sciences:

nachricht Permafrost's turn of the microbes
05.03.2015 | DOE/Pacific Northwest National Laboratory

nachricht Oxygen arrived at the bottom of the Central Baltic Sea
05.03.2015 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

70 Nobel laureates and 672 young scientists expected at Lindau

04.03.2015 | Event News

Registration open: 11th X-ray Forum for Customers of GE’s Digital Radiography and Industrial CT Inspection Technologies

04.03.2015 | Event News

ΣYSTEMS INTEGRATION in Finland focusses on high-tech printing

04.03.2015 | Event News

 
Latest News

Strength in numbers

05.03.2015 | Information Technology

New CMI Process Recycles Valuable Rare Earth Metals From Old Electronics

05.03.2015 | Process Engineering

Genetic Data Can Help Predict How Pine Forests Will Cope with Climate Change

05.03.2015 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>