Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting solar geoengineering to minimize risk and inequality

22.10.2012
New study suggests that solar geoengineering can be tailored to reduce inequality or to manage specific risks like the loss of Arctic sea ice
By tailoring geoengineering efforts by region and by need, a new model promises to maximize the effectiveness of solar radiation management while mitigating its potential side effects and risks. Developed by a team of leading researchers, the study was published in the November issue of Nature Climate Change.

Solar geoengineering, the goal of which is to offset the global warming caused by greenhouse gases, involves reflecting sunlight back into space. By increasing the concentrations of aerosols in the stratosphere or by creating low-altitude marine clouds, the as-yet hypothetical solar geoengineering projects would scatter incoming solar heat away from the Earth’s surface.

Critics of geoengineering have long warned that such a global intervention would have unequal effects around the world and could result in unforeseen consequences. They argue that the potential gains may not be worth the risk.

“Our research goes a step beyond the one-size-fits-all approach to explore how careful tailoring of solar geoengineering can reduce possible inequalities and risks,” says co-author David Keith (pictured at right), Gordon McKay Professor of Applied Physics at the Harvard School of Engineering and Applied Sciences (SEAS) and Professor of Public Policy at Harvard Kennedy School. “Instead, we can be thoughtful about various tradeoffs to achieve more selective results, such as the trade-off between minimizing global climate changes and minimizing residual changes at the worst-off location.”

The study—developed in collaboration with Douglas G. MacMartin of the California Institute of Technology, Ken Caldeira of the Carnegie Institution for Science, and Ben Kravitz, formerly of Carnegie and now at the Department of Energy—explores the feasibility of using solar geoengineering to counter the loss of Arctic sea ice.

“There has been a lot of loose talk about region-specific climate modification. By contrast, our research uses a more systematic approach to understand how geoengineering might be used to limit a specific impact. We found that tailored solar geoengineering might limit Arctic sea ice loss with several times less total solar shading than would be needed in a uniform case.”

Generally speaking, greenhouse gases tend to suppress precipitation, and an offsetting reduction in the amount of sunlight absorbed by Earth would not restore this precipitation. Both greenhouse gases and aerosols affect the distribution of heat and rain on this planet, but they change the temperature and precipitation in different ways in different places. The researchers suggest that varying the amount of sunlight deflected away from the Earth both regionally and seasonally could combat some of this problem.

“These results indicate that varying geoengineering efforts by region and over different periods of time could potentially improve the effectiveness of solar geoengineering and reduce climate impacts in at-risk areas,” says co-author Ken Caldeira, Senior Scientist in the Department of Global Ecology at the Carnegie Institution for Science.

The researchers note that while their study used a state-of-the-art model, any real-world estimates of the possible impact of solar radiation management would need to take into account various uncertainties. Further, any interference in Earth’s climate system, whether intentional or unintentional, is likely to produce unanticipated outcomes.

“While more work needs to be done, we have a strong model that indicates that solar geoengineering might be used in a far more nuanced manner than the uniform one-size-fits-all implementation that is often assumed. One might say that one need not think of it as a single global thermostat. This gives us hope that if we ever do need to implement engineered solutions to combat global warming, that we would do so with a bit more confidence and a great ability to test it and control it.”

The authors declare no competing financial interests.

PRESS CONTACTS:

Harvard School of Engineering and Applied Sciences
Michael Patrick Rutter, (617) 496-3815

Carnegie Institution for Science
Natasha Metzler, (202) 939-1142

California Institute of Technology
Lawren Markle, (626) 395-3226

Michael Patrick Rutter | EurekAlert!
Further information:
http://www.seas.harvard.edu

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>