Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Targeting solar geoengineering to minimize risk and inequality

New study suggests that solar geoengineering can be tailored to reduce inequality or to manage specific risks like the loss of Arctic sea ice
By tailoring geoengineering efforts by region and by need, a new model promises to maximize the effectiveness of solar radiation management while mitigating its potential side effects and risks. Developed by a team of leading researchers, the study was published in the November issue of Nature Climate Change.

Solar geoengineering, the goal of which is to offset the global warming caused by greenhouse gases, involves reflecting sunlight back into space. By increasing the concentrations of aerosols in the stratosphere or by creating low-altitude marine clouds, the as-yet hypothetical solar geoengineering projects would scatter incoming solar heat away from the Earth’s surface.

Critics of geoengineering have long warned that such a global intervention would have unequal effects around the world and could result in unforeseen consequences. They argue that the potential gains may not be worth the risk.

“Our research goes a step beyond the one-size-fits-all approach to explore how careful tailoring of solar geoengineering can reduce possible inequalities and risks,” says co-author David Keith (pictured at right), Gordon McKay Professor of Applied Physics at the Harvard School of Engineering and Applied Sciences (SEAS) and Professor of Public Policy at Harvard Kennedy School. “Instead, we can be thoughtful about various tradeoffs to achieve more selective results, such as the trade-off between minimizing global climate changes and minimizing residual changes at the worst-off location.”

The study—developed in collaboration with Douglas G. MacMartin of the California Institute of Technology, Ken Caldeira of the Carnegie Institution for Science, and Ben Kravitz, formerly of Carnegie and now at the Department of Energy—explores the feasibility of using solar geoengineering to counter the loss of Arctic sea ice.

“There has been a lot of loose talk about region-specific climate modification. By contrast, our research uses a more systematic approach to understand how geoengineering might be used to limit a specific impact. We found that tailored solar geoengineering might limit Arctic sea ice loss with several times less total solar shading than would be needed in a uniform case.”

Generally speaking, greenhouse gases tend to suppress precipitation, and an offsetting reduction in the amount of sunlight absorbed by Earth would not restore this precipitation. Both greenhouse gases and aerosols affect the distribution of heat and rain on this planet, but they change the temperature and precipitation in different ways in different places. The researchers suggest that varying the amount of sunlight deflected away from the Earth both regionally and seasonally could combat some of this problem.

“These results indicate that varying geoengineering efforts by region and over different periods of time could potentially improve the effectiveness of solar geoengineering and reduce climate impacts in at-risk areas,” says co-author Ken Caldeira, Senior Scientist in the Department of Global Ecology at the Carnegie Institution for Science.

The researchers note that while their study used a state-of-the-art model, any real-world estimates of the possible impact of solar radiation management would need to take into account various uncertainties. Further, any interference in Earth’s climate system, whether intentional or unintentional, is likely to produce unanticipated outcomes.

“While more work needs to be done, we have a strong model that indicates that solar geoengineering might be used in a far more nuanced manner than the uniform one-size-fits-all implementation that is often assumed. One might say that one need not think of it as a single global thermostat. This gives us hope that if we ever do need to implement engineered solutions to combat global warming, that we would do so with a bit more confidence and a great ability to test it and control it.”

The authors declare no competing financial interests.


Harvard School of Engineering and Applied Sciences
Michael Patrick Rutter, (617) 496-3815

Carnegie Institution for Science
Natasha Metzler, (202) 939-1142

California Institute of Technology
Lawren Markle, (626) 395-3226

Michael Patrick Rutter | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>