Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Talk at Cancun is of 2 degrees Celsius – even 1.5 degrees would have effects lasting centuries

09.12.2010
Even global warming of just 1.5 degrees Celsius would have consequences for centuries. The oceans store elevated temperatures for a longer time than was previously thought.

This is due to a change in ocean-atmosphere heat exchange, scientists of the Potsdam Institute for Climate Impact Research discovered. Heat in lower oceanic layers is trapped by a cooling of upper layers, says a study which is about to be published in the journal Earth System Dynamics.

Even if it would work to cool down the planet by extracting CO2 from the atmosphere, according to the calculations this cooling would be ten times slower than the currently observed temperature rise by greenhouse gases. Steric sea level rise under this scenario would continue for 200 years after the peak in surface air temperatures.

At the climate summit in Cancún, Mexico, it is being debated whether and how climate change of more than two degrees compared to the preindustrial age can be prevented. Pledges by many states to reduce their emissions of CO2 would still lead to an increase of global mean temperatures by 3 to 4 degrees. One year ago, in Copenhagen, after pressure by mainly small island states it was decided that a more ambitious scenario of emission reduction should also be investigated, with a 1.5 degrees limit. Research on this up to now has been sparse. PIK researchers have now simulated several scenarios with high-performance computers.

“The good news is that a limitation of global warming really could be achieved if emissions declined after the year 2015 and if from 2070 considerable amounts of CO2 would be extracted from the atmosphere,“ says lead-author Jacob Schewe. To achieve this, however, fossil fuels would probably have to be substituted by the massive use of biomass plus carbon capture and storage. These two technologies imply risks. But the bad news is, Schewe says: “Even a mean temperature rise of less than two degrees would have far-reaching consequences – though less severe ones than in the case of stronger global warming.“

Thermal oceanic expansion alone would yield, under the 1.5 degrees scenario, a mean sea level rise of 30 centimeters in 2250. “This would already have serious effects on many coastal regions,“ says Anders Levermann, co-author and professor of dynamics of the climate system. “If we just keep on emitting greenhouse gases, in a business-as-usual scenario, steric sea level rise wouldn't stop even in 2500, resulting in a mean sea level rise of 200 centimeters.“ In addition to this, there would be contributions to sea level rise from melting ice sheets. Monsoon rainfall in Asia could also be considerably affected, even under the 1.5 degrees scenario. All of this is significant for the issue of adaptation to climate change, which is on the agenda in Cancún.

Most relevant are changes of temperature in the oceans, the simulation run by the PIK researchers shows. In the northern Atlantic, for instance, there could be abnormal warming for a long time. This would be provoked not just by the known inertia but by the newly discovered, still stronger mechanism whereby cooling on the surface interferes with regular ocean-atmosphere heat exchange. This could affect marine ecosystems. The ice-shelves of Antarctica could melt. And prolonged deep ocean warming could trigger the dissociation of methane hydrates in ocean sediments and thereby release additional amounts of greenhouse gas into the atmosphere.

Article: Schewe, J., Levermann, A., Meinshausen, M.: Climate change under a scenario near 1.5 C under a scenario of global warming: Monsoon intensification, ocean warming and steric sea level rise. Earth System Dynamics Discussions 1 (2010), 297-324 [doi:10.5194/esdd-1-297-2010]

Link: http://www.pik-potsdam.de/%7Eanders/publications/schewe_levermann10b.pdf

For further information please contact the PIK press office:
Phone: +49 331 288 25 07
E-mail: press@pik-potsdam.de

Jonas Viering | PIK Potsdam
Further information:
http://www.pik-potsdam.de
http://www.pik-potsdam.de/%7Eanders/publications/schewe_levermann10b.pdf

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>