Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Talk at Cancun is of 2 degrees Celsius – even 1.5 degrees would have effects lasting centuries

09.12.2010
Even global warming of just 1.5 degrees Celsius would have consequences for centuries. The oceans store elevated temperatures for a longer time than was previously thought.

This is due to a change in ocean-atmosphere heat exchange, scientists of the Potsdam Institute for Climate Impact Research discovered. Heat in lower oceanic layers is trapped by a cooling of upper layers, says a study which is about to be published in the journal Earth System Dynamics.

Even if it would work to cool down the planet by extracting CO2 from the atmosphere, according to the calculations this cooling would be ten times slower than the currently observed temperature rise by greenhouse gases. Steric sea level rise under this scenario would continue for 200 years after the peak in surface air temperatures.

At the climate summit in Cancún, Mexico, it is being debated whether and how climate change of more than two degrees compared to the preindustrial age can be prevented. Pledges by many states to reduce their emissions of CO2 would still lead to an increase of global mean temperatures by 3 to 4 degrees. One year ago, in Copenhagen, after pressure by mainly small island states it was decided that a more ambitious scenario of emission reduction should also be investigated, with a 1.5 degrees limit. Research on this up to now has been sparse. PIK researchers have now simulated several scenarios with high-performance computers.

“The good news is that a limitation of global warming really could be achieved if emissions declined after the year 2015 and if from 2070 considerable amounts of CO2 would be extracted from the atmosphere,“ says lead-author Jacob Schewe. To achieve this, however, fossil fuels would probably have to be substituted by the massive use of biomass plus carbon capture and storage. These two technologies imply risks. But the bad news is, Schewe says: “Even a mean temperature rise of less than two degrees would have far-reaching consequences – though less severe ones than in the case of stronger global warming.“

Thermal oceanic expansion alone would yield, under the 1.5 degrees scenario, a mean sea level rise of 30 centimeters in 2250. “This would already have serious effects on many coastal regions,“ says Anders Levermann, co-author and professor of dynamics of the climate system. “If we just keep on emitting greenhouse gases, in a business-as-usual scenario, steric sea level rise wouldn't stop even in 2500, resulting in a mean sea level rise of 200 centimeters.“ In addition to this, there would be contributions to sea level rise from melting ice sheets. Monsoon rainfall in Asia could also be considerably affected, even under the 1.5 degrees scenario. All of this is significant for the issue of adaptation to climate change, which is on the agenda in Cancún.

Most relevant are changes of temperature in the oceans, the simulation run by the PIK researchers shows. In the northern Atlantic, for instance, there could be abnormal warming for a long time. This would be provoked not just by the known inertia but by the newly discovered, still stronger mechanism whereby cooling on the surface interferes with regular ocean-atmosphere heat exchange. This could affect marine ecosystems. The ice-shelves of Antarctica could melt. And prolonged deep ocean warming could trigger the dissociation of methane hydrates in ocean sediments and thereby release additional amounts of greenhouse gas into the atmosphere.

Article: Schewe, J., Levermann, A., Meinshausen, M.: Climate change under a scenario near 1.5 C under a scenario of global warming: Monsoon intensification, ocean warming and steric sea level rise. Earth System Dynamics Discussions 1 (2010), 297-324 [doi:10.5194/esdd-1-297-2010]

Link: http://www.pik-potsdam.de/%7Eanders/publications/schewe_levermann10b.pdf

For further information please contact the PIK press office:
Phone: +49 331 288 25 07
E-mail: press@pik-potsdam.de

Jonas Viering | PIK Potsdam
Further information:
http://www.pik-potsdam.de
http://www.pik-potsdam.de/%7Eanders/publications/schewe_levermann10b.pdf

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>